Electric Vehicles | Popular Science https://www.popsci.com/category/electric-vehicles/ Awe-inspiring science reporting, technology news, and DIY projects. Skunks to space robots, primates to climates. That's Popular Science, 145 years strong. Tue, 21 Nov 2023 18:15:00 +0000 en-US hourly 1 https://wordpress.org/?v=6.2.2 https://www.popsci.com/uploads/2021/04/28/cropped-PSC3.png?auto=webp&width=32&height=32 Electric Vehicles | Popular Science https://www.popsci.com/category/electric-vehicles/ 32 32 Hyundai’s robot-heavy EV factory in Singapore is fully operational https://www.popsci.com/technology/hyundai-singapore-factory/ Tue, 21 Nov 2023 18:15:00 +0000 https://www.popsci.com/?p=590969
Robot dog at Hyundai factory working on car
Over 200 robots will work alongside human employees at the new facility. Hyundai

The seven-story facility includes a rooftop test track and ‘Smart Garden.’

The post Hyundai’s robot-heavy EV factory in Singapore is fully operational appeared first on Popular Science.

]]>
Robot dog at Hyundai factory working on car
Over 200 robots will work alongside human employees at the new facility. Hyundai

After three years of construction and limited operations, the next-generation Hyundai Motor Group Innovation Center production facility in Singapore is officially online and fully functioning. Announced on November 20, the 935,380-square-foot, seven-floor facility relies on 200 robots to handle over 60 percent of all “repetitive and laborious” responsibilities, allowing human employees to focus on “more creative and productive duties,” according to the company.

In a key departure from traditional conveyor-belt factories, HMGIC centers on what the South Korean vehicle manufacturer calls a “cell-based production system” alongside a “digital twin Meta-Factory.” Instead of siloed responsibilities for automated machinery and human workers, the two often cooperate using technology such as virtual and augmented reality. As Hyundai explains, while employees simulate production tasks in a digital space using VR/AR, for example, robots will physically move, inspect, and assemble various vehicle components.

[Related: Everything we love about Hyundai’s newest EV.]

By combining robotics, AI, and the Internet of Things, Hyundai believes the HMGIC can offer a “human-centric manufacturing innovation system,” Alpesh Patel, VP and Head of the factory’s Technology Innovation Group, said in Monday’s announcement

Atop the HMGIC building is an over 2000-feet-long vehicle test track, as well as a robotically assisted “Smart Farm” capable of growing up to nine different crops. While a car factory vegetable garden may sound somewhat odd, it actually compliments the Singapore government’s ongoing “30 by 30” initiative.

Due to the region’s rocky geology, Singapore can only utilize about one percent of its land for agriculture—an estimated 90 percent of all food in the area must be imported. Announced in 2022, Singapore’s 30 by 30 program aims to boost local self-sufficiency by increasing domestic yields to 30 percent of all consumables by the decade’s end using a combination of sustainable urban growth methods. According to Hyundai’s announcement, the HMGICS Smart Farm is meant to showcase farm productivity within compact settings—while also offering visitors some of its harvested crops. The rest of the produce will be donated to local communities, as well as featured on the menu at a new Smart Farm-to-table restaurant scheduled to open at the HMGICS in spring 2024.

[Related: Controversial ‘robotaxi’ startup loses CEO.]

HMGICS is expected to produce up to 30,000 electric vehicles annually, and currently focuses on the IONIQ 5, as well as its autonomous robotaxi variant. Beginning in 2024, the facility will also produce Hyundai’s IONIQ 6. If all goes according to plan, the HMGICS will be just one of multiple cell-based production system centers.

The post Hyundai’s robot-heavy EV factory in Singapore is fully operational appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Lucid says its new all-electric SUV beats Tesla Model X range by nearly 100 miles https://www.popsci.com/technology/lucid-galaxy/ Mon, 20 Nov 2023 21:00:00 +0000 https://www.popsci.com/?p=590698
Lucid Gravity EV SUV
Just-announced Gravity: a seven-seat SUV from emerging luxury EV builder Lucid. Lucid

The Gravity SUV seats seven and claims 440 miles of range.

The post Lucid says its new all-electric SUV beats Tesla Model X range by nearly 100 miles appeared first on Popular Science.

]]>
Lucid Gravity EV SUV
Just-announced Gravity: a seven-seat SUV from emerging luxury EV builder Lucid. Lucid

The SUV market is big business, especially in the United States. Even supercar manufacturers like Lamborghini are making five-seat SUVs and thriving. Aston Martin’s DBX crossover represents roughly half of its overall sales. And that’s only on the gas-powered side. All-electric SUVs are just starting to find their groove, and vehicles like the three-row Kia EV9 SUV and Volkswagen ID.Buzz “microbus” are on their way to the U.S. market in 2024. Now, emerging luxury EV builder Lucid just announced the Gravity, a seven-seat SUV with an astonishing claim of 440 miles of all-electric range.

The SUV boasts other niceties like acceleration from zero to 60 miles per hour in less than 3.5 seconds, 1,500 pounds of payload (what it can carry inside) and the ability to tow 6,000 pounds. To compare, Tesla’s Model X can tow 5,000 pounds, haul 1,065 pounds inside the vehicle, and can go for 348 miles with the long-range package.

Here’s how Lucid is pushing other EV automakers to increase range and capability.

Gunning for Tesla

Lucid started producing its first model, the Air, in 2021 after more than a dozen years developing battery technology. Launched with 520 miles of EPA-estimated all-electric range and up to 1,111 horsepower, the Air earned rave reviews from users and journalists alike. Luxurious and uncommonly aerodynamic (more about that below), the Air’s starting price is roughly the same as a Tesla Model S. However, the Lucid model gets 115 more miles of range and  91 more horsepower than the Tesla.

If it sounds like an intrastate basketball rivalry, it may be partially attributed to the cross-pollination across the executive level. Before joining Lucid in 2013, CEO Peter Rawlinson spent three years at Tesla as a top engineer. Rawlinson led the engineering team for the Model S; when he left Tesla, he emerged swinging with the Lucid Air sedan. 

The company’s latest accomplishment is the Gravity SUV, and Lucid says “it can achieve 440 miles of range with a battery pack a little more than half the size of some of our battery-hungry competitors.” For context, a GMC Hummer EV’s battery pack alone weighs in at a hefty 2,818 pounds on the GM’s Ultium platform. 

The entire Lucid Air weighs 5,203 pounds and the Gravity is expected to tip the scales north of 6,000 pounds. Sure, it’s relatively heavier than some three-row SUVs such as the Kia Telluride and Lexus GX, but it’s on par with others like the Grand Wagoneer. 

Lucid Galaxy SUV EV towing
The SUV boasts the ability to tow 6,000 pounds. Credit: Lucid Lucid

Advanced battery technology 

Carrying two electric motors, the Gravity is touted as more efficient than its competitors. Rawlinson says the Gravity’s smaller and lighter technology battery pack means consuming fewer precious metals and minerals and results in less energy to charge and less pressure upon the grid. 

The Lucid Air is available with two battery packs–92 kilowatt hours or 112 kilowatt hours–and while Lucid is being vague about its exact specs for now, we expect the Gravity to utilize the larger 112 kWh version. For scale, the GMC Hummer EV and Cadillac Escalade IQ use packs over 200 kWh. 

Justin Berkowitz, Lucid’s senior manager for technology PR, says the company offers “the most efficient electric motors on the market and ultra-high voltage power electronics (over 900 volts compared to many EVs at 400-500).” All of these are designed, patented, engineered, and manufactured in-house by Lucid, and the company also develops the software powering it all. 

The stellar range is also a result of Lucid’s proprietary winding technique that produces a denser magnetic field along with several other innovations that create a super-compact package. The company holds eight patents related to the motor’s windings and cooling, and continues to find ways to squeeze as much copper into the motor stator as possible to generate big energy in a small package.

Aerodynamics are also a key, and Lucid says the Gravity has a drag coefficient of under 0.24. The lower the number, the more efficient the result. Hyundai’s three-row gas-powered Palisade has a 0.33 coefficient of drag, and the upcoming Kia EV9 hits 0.28. Tesla says its Model X sits at 0.24, so Lucid is sliding just below that with the Gravity. It’s still not as aerodynamic as the five-passenger Hyundai Ioniq 6, which has an impressive 0.21 drag coefficient. Give them time, though. Lucid is poised for major growth. 

The post Lucid says its new all-electric SUV beats Tesla Model X range by nearly 100 miles appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
How do electric cars work? By harnessing the magic of magnetism. https://www.popsci.com/technology/how-do-electric-cars-work/ Sat, 11 Nov 2023 12:00:00 +0000 https://www.popsci.com/?p=588757
a Ford Mach-E electric car parked in front of the woods in autumn
A Ford Mach-E electric car. Rob Verger

From the battery system to regenerative braking, these are the basic technologies that power EVs.

The post How do electric cars work? By harnessing the magic of magnetism. appeared first on Popular Science.

]]>
a Ford Mach-E electric car parked in front of the woods in autumn
A Ford Mach-E electric car. Rob Verger

To understand how electric cars work, it helps to keep in mind the ways in which they’re similar to regular gas-burning vehicles. They’re cousins from different generations, not machines from different universes. If you drive, you know the drill: Press down on the pedal with your right foot to get moving, point the vehicle where you want to go, maybe put on some music, and try not to crash. 

“An EV has four wheels,” says Chad Kirchner, the founder of evpulse.com, a news and information site about electric vehicles. “There’s a start button, there’s an accelerator pedal, there’s a brake. In a lot of ways, an EV—and the EV driving experience—is identical to a gas-powered experience.” 

That said, there are key differences in engineering, design, maintenance, and performance between electric cars and internal combustion engine (ICE) vehicles.   

Electric car battery system 101

To begin with, an ICE vehicle relies on a tank of gasoline or diesel to get the energy it needs. An EV, on the other hand, requires a battery system, which consists of a multitude of individual cells. And just like a gas tank, the battery cells store energy. 

“But [a battery cell] also produces power—and the power is a result of the voltage of that particular cell, and the current it’s able to output,” says Charles Poon, the global director of Electrified Systems Engineering at Ford, which makes the Mach-E, the F-150 Lightning, and the E-Transit electric vehicles. He describes the battery as the car’s heart.

Battery design in EVs will differ between automakers, and one of the main ways is the shape of their cells. To make things a bit more tangible, consider the Mach-E, an electric car that descends from a famous line of gas-burning vehicles that gave birth to the term “pony car.” The cells in the Mach-E are in pouch form, whereas other batteries in the market have cylindrical cells (Tesla uses those) or prismatic cells. A Mach-E battery system has hundreds of cells. 

[Related: This giant bumper car is street-legal and enormously delightful]

The lithium-ion-based electric car batteries can also have slightly different chemistries. For example, a Mach-E can come with nickel, cobalt, and manganese (NCM) batteries or lithium iron phosphate (LFP) batteries. The former are known for being able to hold power for longer and performing well in cold temperatures, while LFP batteries are less expensive and can charge up faster. 

How do electric motors work? 

The term AC/DC is not only the name of an Australian rock band, but also describes two forms of electricity: alternating current (AC) and direct current (DC). Both types of power are important for electric cars to work.

The electricity coming out of your wall outlet at home is in AC form, but batteries store their energy in DC form. Because of this, electric cars have a component known as a charger that takes the AC power flowing into the vehicle and switches it to the more battery-friendly DC. A quicker way to charge up one of these cars is by using a DC fast charger, which provides the car with juice in DC form, so the car doesn’t have to convert it. 

“It bypasses the AC charger [in the car], and goes directly into the battery,” Poon explains. 

[Related: What an electric vehicle’s MPGe rating really means]

So the batteries store power in DC form, but there’s a twist: electric motors work with AC power. This means the vehicle has to transform electricity yet again, which it does using a traction inverter that converts the DC back into AC. “And then that is what actually ends up spinning the electric motor, producing power,” Poon adds.  

There are two key components in an electric motor: a stator and a rotor. The rotor sits inside the stator and rotates using the wonders of magnetism that kick in when AC power hits the motor. 

“We send what we call three phases of alternating current through a stator that has wires that are wound radially, sequentially, around the stator,” he explains. “And we are able to create a rotating magnetic field—so the magnetic field rotates, and it pulls the rotor along with it.” 

And voilá! After passing through some gearing, that rotation turns the wheels on your electric vehicle. 

While an ICE car has one engine, Kirchner, from evpulse.com, notes that electric vehicles in the market can have as many as four motors. For example, the rear-wheel drive version of a Mach-E uses one motor, while the all-wheel drive version uses two—one for the front and one for the back. At the other end of the spectrum, a Rivian R1T can have as many as one motor per wheel. 

[Related: Electric cars are better for the environment, no matter the power source]

The pros and cons of driving an electric vehicle

Could you imagine if taking your foot off the gas pedal in an ICE vehicle magically made more gasoline appear in the tank? Something like that happens in an EV.

This cool trick is called regenerative braking, and allows drivers to start slowing down not by pushing the brake pedal as in regular cars, but by taking their foot off the accelerator. Don’t worry—that brake pedal is still there when you need it. In one-pedal or regen mode, things happen in reverse: the wheels turn the motors so they act like generators and send power back to the batteries. 

“You are actually taking the vehicle momentum and putting it back in as chemical energy into the battery,” Poon says.

Mach-E Chief Engineer Donna Dickson says one-pedal driving still remains an unfamiliar technique for drivers, but notes that it helps prevent wear on the brakes while also adding battery charge.

The power source is not the only difference between electric cars and ICE vehicles. There are other details that set the two apart. For example, Kirchner says that while combustion engines have to rev a little to make torque, EV motors make all of their torque from a complete standstill. This results in great acceleration. “Around town, even electric cars that you would not consider sporty by looking at them feel very quick, which makes them excellent city cars,” he continues. 

Another benefit of driving an electric vehicle is that they need less maintenance. There’s no need for an oil change, although their heavier weight means their tires experience more wear and tear. 

On the downside, you can’t charge up the batteries as rapidly or as easily as gasoline goes into a tank, but if you can charge at home, you have a unique perk: “You start every morning with a full tank,” says Kirchner. But that doesn’t always come as easy as it sounds. 

[Related: How does a jet engine work? By running hot enough to melt its own innards.]

“If you are an EV owner, it’s pretty much imperative at this point to have someplace to plug in and charge overnight,” says Paul Waatti, manager of industry analysis for AutoPacific. However, “there’s a good portion of America that doesn’t live in a single-family home.” People residing in condos, apartments, and other residential setups will have a more challenging time finding a charger to plug in their cars overnight. As for public chargers, Waatti says those networks are “very far off from being seamless at this point,” meaning there are too few and many don’t work properly.

The post How do electric cars work? By harnessing the magic of magnetism. appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Rimac’s electric speed demon tore through a world record in reverse https://www.popsci.com/technology/rimac-nevera-reverse-world-record/ Wed, 08 Nov 2023 20:35:00 +0000 https://www.popsci.com/?p=587960
Rimac Nevera hypercar action shot driving in reverse
170 MPH is pretty fast, regardless of direction. Rimac / Dennis Noten

It’s starting to feel like the world’s most powerful EV is running out of impressive feats.

The post Rimac’s electric speed demon tore through a world record in reverse appeared first on Popular Science.

]]>
Rimac Nevera hypercar action shot driving in reverse
170 MPH is pretty fast, regardless of direction. Rimac / Dennis Noten

To put it very simply: the Rimac Nevera electric hypercar is very, very fast. With 1,194-horsepower, a top speed of 256 MPH, and the ability to accelerate faster than an F1 racer, it’s not just one of the most powerful EVs in the world—it’s one of the most powerful cars, period. The $2.1 million Nevera has dashed past so many world records at this point that its makers are now forced to get creative in setting new ones. And they certainly have, judging from a new video released on November 7.

In addition to all its other feats, the Rimac Nevera is apparently now also the Guinness World Record holder for the “fastest speed in reverse.” How fast did it take to earn yet another laurel? 171.34 MPH—certainly an intense speed in any direction.

[Related: Behind the wheel of the bruisingly quick Rimac Nevera hypercar.]

On Tuesday, Nevera chief program engineer Matija Renić revealed that the new stunt actually began as a joke during the hypercar’s development stage.

“We kind of laughed it off,” Renić said via the company’s announcement. Renić noted its cooling and stability systems, not to mention aerodynamics, simply weren’t engineered for putting the pedal to the floor while in reverse. “But then, we started to talk about how fun it would be to give it a shot.”

Simulations indicated a Nevera likely would top 150 MPH while driven backwards, but there was no way to be sure just how stable it would remain while blazing down the road. “We were entering uncharted territory,” Renić added—an understatement if there ever was one.

But as these multiple videos attest, the Nevera is certainly up to the task should it ever improbably become necessary. According to the company’s record-setting test driver, pulling off the stunt “definitely took some getting used to.”

“You’re facing straight out backwards watching the scenery flash away from you faster and faster, feeling your neck pulled forwards in almost the same sensation you would normally get under heavy braking,” Goran Drndak said via Rimac’s November 7 announcement. “You’re moving the steering wheel so gently, careful not to upset the balance, watching for your course and your braking point out the rear-view mirror, all the while keeping an eye on the speed.” Although being “almost completely unnatural” to the car’s design, Drndak said the Nevera “breezed” through the stress test.

It’s hard to imagine what’s left for the Nevera to achieve, but if the latest record is any indication, chances are Rimac designers will think of something.

The post Rimac’s electric speed demon tore through a world record in reverse appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Volvo’s new EV could include recycled blue jeans, pine resin, or flax https://www.popsci.com/technology/volvo-ex30-materials/ Mon, 06 Nov 2023 23:00:00 +0000 https://www.popsci.com/?p=586782
Volvo's EX30 electric car
Volvo's EX30 starts at $36,245. Kristin Shaw

The EX30 costs less than $40,000 and makes use of materials like old denim and flax fiber.

The post Volvo’s new EV could include recycled blue jeans, pine resin, or flax appeared first on Popular Science.

]]>
Volvo's EX30 electric car
Volvo's EX30 starts at $36,245. Kristin Shaw

In Sweden, the word lagom represents the Goldilocks-esque concept of “not too much, not too little, but just right.” Swedish automaker Volvo had this concept in mind when it created the brand’s newest model, the EX30. At the same time, the electric car had to meet a major objective: have the lowest carbon footprint of any Volvo model to date.

Volvo says that the EX30’s “total carbon footprint” is 25 percent less CO2 than the electrified versions of its C40 and XC40 models, in line with the automaker’s stated goal to cut CO2 emissions per car by 40 percent by 2025. To achieve this, they took into account the manufacturing processes, worked to simplify its design, and reduced the materials it needs. Even the exterior colors like Moss Yellow and Cloud Blue superficially reflect Volvo’s Earth-friendly goals. 

What’s more, the vehicle will cost less than $40,000, which in a world of extra-pricey EVs (the average price for an EV was $53,469 in July of this year, according to Cox Automotive), is impressive. Starting at $36,245 (including destination fees), the EX30 is an attractive package.

Here’s how Volvo achieved its sustainability goals while aiming for that “just right” feel.

Sustainable interior ‘rooms’ 

The company integrated recycled PVC collected from house window frames, PET plastic from single-use water bottles, plant materials like flax fibers, and even discarded denim threads from the blue jeans recycling process into the EX30’s interior. 

Buyers of the new EX30 can choose between four interior expressions for the vehicle. Volvo calls the interior themes “rooms” because people spend so much time in their car, Volvo color and materials designer Camille Audra explained to PopSci

Two interior rooms employ recycling themes: they are called indigo, which is made from denim like the blue jeans you may be wearing right now, and breeze, a patterned knit. And two feature natural materials: they are called mist (flax fiber) and pine (tree resin).

“This is inspired from fashion,” Audra says. “People wear blue jeans everywhere in the world.”

Old denim is often recycled into things like pet bed inserts, building insulation, and thermal packaging insulation.  During the process, Audra says, the short fibers that are left over could become waste, but in this case, are instead collected and woven into a new material.

One of the car's interior themes is called "indigo," and makes use of old jeans.
One of the car’s interior themes is called “indigo,” and makes use of old jeans. These vials show steps in the denim recycling process. Kristin Shaw

Combined with cellulose (also a plant-based material) to give strength to the material, the fibers become a durable surface for the dashboard and door panels. Bonus: there are no zippers or button flies to get in the way. 

Along with blue jeans material, flax fiber is lightweight and natural. Also known as linseed, flax is exceedingly strong when woven into fibers. (The flowering plant yields seeds that are pressed to extract oil, or dried and sold as a product in grocery stores around the country. Flaxseed meal—the byproduct of the flaxseed oil-pressing process—has a second life as livestock feed.) Volvo is on track with other automakers, like Kia and Hyundai, that are also using flax fibers inside their cars for sustainability and weight benefits.

“We decided to use flax because it’s used to regenerate soil [between crops] and uses less water than other crops, and still has a nice touch and feel,” Audra says.

In the summer of 2021, Volvo revealed its Concept Recharge, which used flax fibers from a Swiss company called Bcomp. By investing in Bcomp, a company that has also provided products to the racing arm of McLaren or Porsche, Volvo now has a mainline to sustainable materials. 

“Bcomp’s calculations show that compared to regular plastic parts, the natural fiber-based composites are up to 50 percent lighter, use up to 70 percent less plastic and generate up to 62 per cent lower CO2 emissions,” Volvo says

Volvo is also featuring a “room” in a pine theme. The manufacturer uses a material called Nordico, which is made from recycled materials such as PET bottles, corks recycled from the wine industry, and pine resin from sustainable forests in Sweden and Finland. 

Volvo ex30 interior
The paint-splatter theme is in a version of the car that makes use of recycled PET plastics. Kristin Shaw

New colors, natural themes

For one interior trim option, Audra revealed that the design team scanned a piece of granite and then imprinted the granite’s natural patterns onto the recycled plastic. Using a stone grain offers more recycling options later as well, because the texture doesn’t require paint as a finish. 

On the outside, Volvo offers a vibrant hue—probably the brightest color ever seen on a Volvo model—called Moss Yellow, inspired by the lichens that grow on the rocks of the west coast of Sweden. And Cloud Blue looks white in the sunlight but transforms into a soft blue when it’s overcast. 

Even the technology reflects Volvo’s all-in commitment to a low carbon footprint. By keeping parts to a minimum, Volvo creates fewer carbon emissions when manufacturing the EX30. So far, its strategy is working: the brand expects 80 percent of EX30 buyers to be new to Volvo, and overall sales are skyrocketing. 

Correction on Nov. 8, 2023: This post has been updated to clarify that the denim material is used on the dashboard and door panels, not the seats.

The post Volvo’s new EV could include recycled blue jeans, pine resin, or flax appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
How smart trailers could give trucking a clean, electrified boost https://www.popsci.com/technology/range-energy-electric-trailer/ Sat, 04 Nov 2023 11:00:00 +0000 https://www.popsci.com/?p=585958
A Range Energy trailer has a motor, batteries, and other intelligence.
A Range Energy trailer has a motor, batteries, and other intelligence. Range Energy

A special trailer from Range Energy aims to follow the truck tractor "like an obedient dog." Here's how it all works.

The post How smart trailers could give trucking a clean, electrified boost appeared first on Popular Science.

]]>
A Range Energy trailer has a motor, batteries, and other intelligence.
A Range Energy trailer has a motor, batteries, and other intelligence. Range Energy

One of the most ubiquitous sights on the road is an 18-wheel truck. These large, loud vehicles are a prolific presence on America’s interstates, and are made up of two big components: the tractor, which does the pulling and is where the driver is, and the trailer, where the stuff goes. 

In an effort to clean up the relatively large emissions that come from this part of the transportation sector, some companies are working on electric tractors that can pull trailers: Freightliner has a model called the eCascadia, Tesla has its Semi, Volvo its VNR, and others are working on it, too. But a relatively new company called Range Energy is focusing on the trailer itself, equipping it with batteries, a motor, and other intelligence. The trailer can be paired with a tractor burning diesel, or an electric one, like one of those eCascadias. 

Currently, there are about 3.5 million trailers in the United States, according to a company called ACT Research.

Range Energy is led by Ali Javidan, an early Tesla employee and veteran of Google and Zoox, the autonomous car company now owned by Amazon. Javidan also brings something else to the table: experience towing things. “I’ve always been around equipment, cars, trucks, stuff like that,” he says. “A few of my uncles had car dealerships, mechanic shops, lots of land in Sacramento. And so growing up, one of my first experiences driving was towing cars from the dealership to the service center, or moving boats around the farm, or things like that.” 

So while he points out that he has “very, very limited time in a class-8 tractor trailer,” which is a big 18-wheeler, he adds that he has “lots of towing empathy.” 

[Related: Futuristic aircraft and robotic loaders dazzled at a Dallas tech summit]

Range’s RA-01 product looks like a regular trailer—typically a big, boxy, and boring presence on the road—but has some key changes. There’s a motor that turns one of the axles at the back of the trailer. That motor gets the power it needs from an onboard battery pack, which isn’t inside the trailer (where it would interfere with cargo space) but is below it. There’s also what Javidan refers to as “smart kingpin.” A kingpin on a big 18-wheel truck is the point where the trailer connects to the tractor. What makes the Range Energy kingpin different from a regular kingpin is that it senses what the tractor is doing. “It’s a real-time measurement of how hard the tractor is pulling,” Javidan says.

Because it gathers this information, the trailer can be “kind of like an obedient dog on a leash,” he says, with the goal of making the trailer feel “essentially weightless” for the tractor. The trailer wouldn’t ever push the tractor, though. 

The result, according to Range, is that if this trailer is paired with a diesel-burning tractor, that tractor could get around 35 to 40 percent better fuel efficiency. And if it were paired with an electric tractor, it could add about 100 miles of range or more. 

Another benefit potentially arises from what happens when a truck towing a Range trailer goes downhill. That’s because of regenerative braking, which uses the motion from the wheels to charge the battery back up and simultaneously slow the whole rig down. That means that the truck’s brakes get less wear and tear, too. “The second-biggest maintenance item on a trailer is brakes,” he says. (Tires take the top slot.) Plus, Javidan says that the system has a stability boost going downhill, “because we’re dragging from the trailer.” 

The most obvious negative tradeoff that comes with electrifying the trailer is weight. “It adds about 4,000 pounds to the total system,” Javidan says. (A tractor-trailer rig has to stay below 80,000 pounds in total, although an electric tractor gets an additional 2,000 pound allowance.) For trucks hauling something heavy, like soda, this could affect the amount of goods they can transport in one load. But many trucks carrying stuff have “cubed out,” Javidan says—meaning that the truck’s interior space fills up before hitting the maximum weight limit. (Just think about an Amazon box filled packaging around something small, like toothpaste, and you get the idea.) 

Javidan says that they’ll start beta testing next year, with deliveries to customers planned for 2025. “You will start seeing these trailers on the roads in real volumes starting in 2026,” he predicts. 

There’s good reason for regulators and companies to work on cleaning up this transportation sector, both from a climate-change perspective and a public-health one. If you consider buses and medium- and heavy-duty trucks, those big rigs make up just 6 percent of vehicles on the roads in the US, but account for sizable portions of greenhouse gas emissions and nitrogen oxides (NOx). In other words, they are “disproportionately emitting emissions,” says Stephanie Ly, the senior manager of eMobility Strategy and Manufacturing Engagement at the World Resources Institute. 

The NOx emissions have “major public health impacts,” she says. Exposure to this diesel-heavy industry has serious ramifications for people, with repercussions like “years of life lost” as well as “asthma, cancer, infertility, and so many other negative effects, particularly for those that live nearest to high-traffic truck centers,” she says. And these groups, Ly adds, “are primarily communities of color, and communities that are lower income, or have less access to different types of employment, so they’re especially vulnerable.”

With Range Energy’s plan to electrify the trailer, Ly notes that “it’s absolutely fascinating what they are proposing.” That said, just as there are multiple companies working on creating electric tractors that do the pulling, other firms also are working on electrifying the trailer, too. ConMet eMobility, ZF, and Einride all represent potential competitors for Range. 

“I will say in the trucking sector, there’s quite a bit of brand loyalty within the supply chain,” Ly adds. In other words, any new player might have something of a long haul ahead of them as they try to pull onto the highway, get into the right gear, and travel down that open road.

The post How smart trailers could give trucking a clean, electrified boost appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
A new blue paint color for cars uses nano-pigments to boost its intensity https://www.popsci.com/technology/car-color-science/ Mon, 30 Oct 2023 19:00:00 +0000 https://www.popsci.com/?p=584375
Gypsy Modina with the Double Apex Blue Pearl color.
Gypsy Modina with the Double Apex Blue Pearl color. Acura

Way more goes into picking a vehicle's paint color than you might imagine.

The post A new blue paint color for cars uses nano-pigments to boost its intensity appeared first on Popular Science.

]]>
Gypsy Modina with the Double Apex Blue Pearl color.
Gypsy Modina with the Double Apex Blue Pearl color. Acura

The most popular car paint color in America is white. The hue has names like Blizzard White, Snow Quartz, and Wind Chill Pearl. Black, gray, and silver aren’t far behind on the popularity scale, rounding out the vast majority of cars on the road. 

These stats don’t mean that automakers are staying monochrome, though. On the contrary, Italian automaker Fiat thumbed its nose at bland colors and declared earlier this year it wouldn’t make cars in any shade of gray. Jeep likes to debut names for its vehicle finishes that are as colorful as the paint itself: Snazzberry, Hellayella, and Punk’N, for example. And Mazda has established itself as a colorful brand with its ubiquitous Soul Red Crystal Metallic and new Artisan Red, which morphs from a black cherry look in the sunlight to a dark, almost-black tint on a cloudy day or at dawn and dusk. 

Automakers use electrostatic spray guns to apply even layers of paint on the vehicles they produce, and car paint has evolved into a high-tech science that delivers more colors than designers imagined even 10 years ago. 

For example, Honda’s luxury arm, Acura, debuted its new Precision EV concept last year; it sports an arresting blue finish that seems to radiate from the inside out. Gypsy Modina, who leads the brand’s color and materials group, created the Double Apex Blue Pearl tint, which will grace the 2024 ZDX Type S. 

This is how Modina whips up pigments that set Acura apart and how she sees the future of paint and color technology. 

A Mazda CX-90 in Artisan Red.
A Mazda CX-90 in Artisan Red. Kristin Shaw

Color inspiration 

Modina got her degree in fine arts at the College for Creative Studies in Detroit, the alma mater of notable automotive designers like Ralph Gilles, chief design officer for Stellantis, and John Krsteski, senior chief designer for Genesis. She started working for Acura 18 years ago, and now mixes colors like a mad scientist for the brand to come up with bespoke paint finishes. 

Her job seems more science than art. She has to understand how light bounces from the vehicle to the eye and how the color accentuates the form and fits the personality and demographic of that car. 

“I don’t think I knew I’d be doing so much science and math [in this field],” Modina says wryly. “It’s funny, because I find it hard to follow a recipe when cooking.” 

She doesn’t sit at her desk dreaming up color combinations. Instead, the process is more exciting: Modina travels the world seeking inspiration and finds it in fashion-forward places like Milan, Italy but also in nature, hiking in locations as far-flung as Kruger National Park in South Africa.

What Modina sees coming down the pipeline is colors and materials that are designed with the goal of minimizing waste and pollution by recycling, and using more natural versus chemical materials. Interestingly, that doesn’t align with what some manufacturers are showing off on the technology side, like the BMW SUV that features a specially developed body wrap stimulated by electrical signals to change color.

“Now you’re seeing concepts that change colors and car bodies that are more like screens,” Modina says. “There are things you can create that can be more solutions to a circular economy. The goal is for circularity, and I do think optimistically that there are material technologies and sciences that can [contribute to that].” 

The topic has a colorful history: Back when cars used to be spray-painted by hand with layers upon layers of pigment, the overspray would build up in the paint bays. Over time, chunks of buildup needed to be removed, and someone along the way discovered the beauty of baked-on layers of color that could be polished into gemlike stones. You’ll find “Fordite” stones (also called “motor agate” or “Detroit agate”) as pieces of jewelry on Etsy and other sites. But the process that created these multicolored polished stones no longer exists.

Color options from Lamborghini. What color do you want your Revuelto supercar to be?
Color options from Lamborghini. What color do you want your Revuelto supercar to be? Kristin Shaw

Car paint that glows even when it’s cloudy

On a cloudy and gray day during Monterey Car Week in August 2022, Acura unveiled its Precision EV in Double Apex Blue. That kind of weather could be an unfortunate backdrop for the high-profile presentation of a new car, but the blue finish looked like it was glowing even through the gloom. Modina and the design team breathed a sigh of relief. 

“We were giving each other high fives,” Modina says. “There aren’t that many colors that do that.”

The glow is a physical manifestation of what Acura’s first all-electric vehicle, scheduled for delivery next summer, represents. 

Modina leads the brand’s color and materials group.
Modina leads the brand’s color and materials group. Acura

“We knew electrification was coming into play and we wanted the blue to go more liquid and more sheer,” Modina says. “There’s something about electrification that has a smoothness to it and we wanted [the paint to appear] more liquid. We also wanted it to be unique; we saw in the US market that people are more open to bold colors.”

The form language (the term refers to design styles unique to each manufacturer) and shape are closely related to the brand, Modina says. She and her team design many different types of hues, but the brand’s Double Apex Blue and Performance Red stand out because they must lay on the body in a way that matches the brand’s personality. Blue, in particular, is a heritage color for Acura, and has been refreshed over the years. This particular blue includes nano-pigments, which are finer particles that load the color with higher saturation, making the tint appear more intense. 

Light, color, and form work together with our emotions to stimulate a response; in Acura’s case, the brand wants us to see its cars as fast and performance-oriented. Even if they’re popular, cars in bland colors just can’t measure up.

The post A new blue paint color for cars uses nano-pigments to boost its intensity appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
At this epic off-roading event, traditional map skills and an EV win the day https://www.popsci.com/technology/rebelle-rally-2023/ Mon, 23 Oct 2023 22:00:00 +0000 https://www.popsci.com/?p=582613
The Rebelle Rally involves teams spending long days navigating off the grid, without any help from electronic devices.
The Rebelle Rally involves teams spending long days navigating off the grid, without any help from electronic devices. Regine Trias

Modern vehicles and old-fashioned navigation techniques intersect at the Rebelle Rally. No Google Maps allowed.

The post At this epic off-roading event, traditional map skills and an EV win the day appeared first on Popular Science.

]]>
The Rebelle Rally involves teams spending long days navigating off the grid, without any help from electronic devices.
The Rebelle Rally involves teams spending long days navigating off the grid, without any help from electronic devices. Regine Trias

Hundreds of years before Google Maps and other apps like it made navigation as easy as looking at your smartphone, explorers found their way around the planet by the light of the moon and stars, or by shadows cast by the sun. Today, humans rely on electronic devices, not their instincts or the study of celestial bodies. And of course before the smartphone came along, people also used maps printed on dead trees. But kids born recently aren’t using paper maps at all; instead they just punch in an address to receive a route to get where they’re going.

Off-roading champion Emily Miller wanted to teach others what she learned from years of navigating with a ruler, pencil, compass, and topographical map. With that in mind, she created the Rebelle Rally, the longest off-road time-distance navigational rally in the United States. The idea of a navigational rally might not be novel, but this one is: All competitors are required to disable any digital navigational aids on their vehicle and seal up their electronic devices (mobile phones, AirTags, tablets, laptops, and more) for the duration. It’s a test of driving precision and navigation skills, not a speed race pell-mell across the desert. 

Over eight days, Rebelle Rally competitors are shut off from the world, sleeping in tents near ghost towns and rock faces instead of hotels and cities. This year, the rally’s course started in Mammoth Lakes, California, crossed into Nevada, and finished in the southeast corner of California at the majestic Glamis Dunes. The only news participants hear is their daily standings in the competition—there’s no endless scrolling of social media feeds. Plotting latitude and longitude points requires one’s full attention, and by the end of a 10-hour day spent hunting checkpoints, there’s no need for entertainment. The competitors are wiped out physically and mentally, heading for their tents to sleep.

I just completed my second year of the rally; I was sponsored by Hyundai and we operated a Santa Cruz with a 1.5-inch lift in the front and a 1-inch lift in the back. We had off-road accessories (traction boards, shovels, and a spare tire) mounted to a custom Rally Innovations rack to help us along. This is what it’s like to compete at this crossroads of analog and high-tech. 

A team using a Rivian R1T took the top spot.
A team using a Rivian R1T took the top spot. Ernesto Araiza

Analog navigation

Now entering its ninth year, the Rebelle Rally just wrapped up its most recent competition with 65 teams of two women each; the all-female event concluded on October 20. Each morning, the teams were alerted that it’s time to get going by the gentle clanging sound of a cowbell at 5 a.m. Many teams are already up by that point, the sounds of tent zippers tearing the fabric of the silence even before that.

Each day, a race official distributes a list of 20 or more checkpoints to the teams long before dawn. Then teams plot latitude and longitude points along with distances and headings on their paper maps. On-the-ground checkpoints are marked with flags (mandatory green checkpoints, the easiest), or poles (blue checkpoints, which are more difficult to find) or invisible geofenced areas (black checkpoints, requiring precision within 200-300 meters to avoid a penalty). 

Once a team drives to the checkpoint and sees the flag, or sees what they believe to be the spot, one of the competitors clicks on a satellite tracker that displays the exact latitude and longitude point where the signal is traced. A company called YB Tracking and the Iridium satellite network track the competitors to keep them safe; the staff knows exactly where each car is, even if the teams themselves are lost. 

Teams also participate in enduro segments, which are a series of checkpoints that include time checks along the route and require intense focus and concentration to stay at the average dictated speed, which may change frequently. To prepare for these on-time sections, competitors use mathematical formulas to calculate the seconds and minutes of each segment in the precise roadbook based on the distance and speed. 

Using a solar-powered calculator and a basic stopwatch, we found our way. 

No Google Maps allowed; paper maps served as navigational tools.
No Google Maps allowed; paper maps served as navigational tools. Nicole Dreon

Green power takes the gold

After seven days of full-time driving plus the half-day prologue, it was a team called the Limestone Legends that took first place in a Rivian R1T all-electric pickup truck. Not only was it the first time an all-electric vehicle earned the gold medal in the Rebelle Rally, the second place vehicle was a hybrid: a Jeep Wrangler 4xe. Rivian has been a strong supporter of the Rebelle Rally starting in October 2020 with a pre-production model of an R1T, which became the first fully electric truck to ever compete in the event. 

Charging up an EV in the middle of the desert is a challenge. While gas-powered cars are fueled up by a tanker that travels from base camp to base camp with the rally, it’s not as easy to provide a boost for batteries that way. So, the Rebelle Rally partnered with Renewable Innovations to provide hydrogen-powered EV charging to the Rivian and Jeep 4xe models each day. 

Each base camp embraced green energy too, mobilizing a 53-foot mobile Renewable Innovations semi with high-density solar panels combined with “follow-the-sun” smart flowers on each side to collectively deliver 50 kilowatts of peak power for base camp. 

While our phones and navigation systems were unavailable by design, my team did have a Nextbase dash cam in the car so we could capture the beauty of the off-road trails in California and Nevada. It came in handy when we witnessed a crash—a Mitsubishi crossover tried to pass us and the full-size SUV in front of us on the left. We handed over our camera’s memory card to the police, providing an airtight record of what happened. And luckily, no one was seriously hurt. 

The post At this epic off-roading event, traditional map skills and an EV win the day appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Elon Musk says ‘we dug our own grave with Cybertruck’ ahead of its November release https://www.popsci.com/technology/tesla-cybertruck-release-date/ Thu, 19 Oct 2023 19:00:00 +0000 https://www.popsci.com/?p=581189
Tesla Cybertruck concept art in warehouse
The Cybertruck is set to finally arrive after a nearly two-year delay. Tesla

Tesla CEO announced the release date during an earnings call this week.

The post Elon Musk says ‘we dug our own grave with Cybertruck’ ahead of its November release appeared first on Popular Science.

]]>
Tesla Cybertruck concept art in warehouse
The Cybertruck is set to finally arrive after a nearly two-year delay. Tesla

First officially unveiled back in 2019, Tesla’s electric Cybertruck impressed and amused the public with its angular, “Blade Runner-inspired” design and purported features including reinforced glass, stainless steel body, and a lack of door handles. Although originally slated to arrive in reservation holders’ driveways in 2021, the EV release faced numerous delays exacerbated by COVID-19 pandemic supply chain issues. This week, however, Elon Musk said Tesla’s long-delayed Cybertruck will finally roll off the company’s Giga Texas lot on November 30, when Tesla is now scheduled to begin delivery. However, the company’s CEO cautioned investors against early celebrations.

During the company’s Q3 earnings call on October 18, Musk stressed that both customers and shareholders should “temper expectations,” particularly for the Cybertruck’s initial profitability. Tesla faced various challenges with scaling and ramping up production. Musk went as far as to say, “we dug our own grave with Cybertruck” during the vehicle’s multi-year hype campaign.

[Related: Tesla’s Cybertruck is the latest lofty promise in the world of electric pickups.]

“Cybertruck is one of those special products that comes along only once in a long while. And special products that come along once in a long while are just incredibly difficult to bring to market to reach volume, to be prosperous,” Musk opined, as reported by The Verge on Wednesday.

The Cybertruck base model was initially estimated at $39,900 in 2019, but Tesla is expected to announce updated pricings during its November 30 release event. No price ranges are currently available on Tesla’s website, but customers can still put down a refundable $100 deposit for a Cybertruck with the promise to “complete your configuration as production nears.”

In the meantime, multiple companies have released their own electric truck options, including the Ford F-150 Lightning and Rivian’s R1T. During this week’s Tesla earnings call, the company stated that it had the capacity to produce more than 125,000 Cybertrucks annually. Musk said he saw a potential for Tesla to produce 250,000 Cybertrucks in 2025. Musk said that more than one million people have reserved the Cybertruck so far.

[Related: Here is what a Tesla Cybertruck cop car could look like.]

The product may not be ready, but the concept keeps iterating itself. In September, Oracle co-founder Larry Ellison teased concept art for a Cybertruck cop car including EV’s recognizable design beneath red and blue emergency lights, a bull bar, and multiple Oracle logos. “Our next generation police car is coming out very soon,” Ellison, a “close friend” of Musk, said during his presentation at the data service giant’s CloudWork conference to audible murmurs in the crowd. “It’s my favorite police car. It’s my favorite car, actually. It’s Elon’s favorite car.”

Musk’s desire to release an electric pickup truck dates as far back as 2012, when he tweeted he “would love make a Tesla supertruck with crazy torque, dynamic air suspension and corners [sic] like its on rails.”

“That’d be sweet…,” he added at the time.

The post Elon Musk says ‘we dug our own grave with Cybertruck’ ahead of its November release appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
How Audi designed its densest EV battery yet https://www.popsci.com/technology/audi-stacking-battery-technology/ Mon, 02 Oct 2023 22:00:00 +0000 https://www.popsci.com/?p=576574
audi car body and battery being assembled in the factory
Audi

The new 'stacking technology' makes better use of physical space per cell, leading to increased capacity.

The post How Audi designed its densest EV battery yet appeared first on Popular Science.

]]>
audi car body and battery being assembled in the factory
Audi

It has been more than two years since former Audi CEO Markus Duesmann announced that after 2026, the automaker will develop only battery-powered models. Audi’s plan is to have more than 20 fully electric models in its portfolio by 2025. The carmaker has already started down this road by investing about 18 billion euros ($19 billion and change) in electrification and hybridization.

In the process, Audi is pursuing battery technology that optimizes energy efficiency. Its primary focus for innovation is solid state batteries, which use solid electrolytes instead of liquid. The brand designs, develops, and checks battery cells and battery components on its own at its battery testing center in Gaimersheim, Germany. It recently transitioned its battery packs from winding to a stacking configuration, where the cells are stacked neatly, like a layer cake, to increase the overall capacity. 

More capacity means greater range. And better range makes these vehicles more marketable in a competitive, burgeoning market. Any advantage between today and the sometime-in-the-future implementation of solid state batteries is a coveted position. 

Here’s how it works.

Stacking adds density, thus energy

The German brand is known for agile, sleek vehicles that consistently earn high marks for performance and handling. As part of the Volkswagen group along with Porsche and even Lamborghini, Audi is in good company. Audi (along with the other brands in the group) has ratcheted up its EV goals, seeking the best ways to leap ahead of its competitors, and battery stacking is the latest mark of progress.

[Related: Why solid state batteries are the next frontier for EV makers]

In new EVs like the Q8 e-tron, electrodes in lithium-ion cells are thin foils which are traditionally wound into a structure called a jelly roll, Audi explained to PopSci. These jelly rolls can be either round for cylindrical cells or flat for prismatic cells. In prismatic cells, the utilization of the inner volume is limited due to the rounded edges.

By stacking single electrode sheets into larger stacks, more of the cell’s inner volume can be used, increasing the cell’s capacity. This allows Audi’s EVs to make better use of the physical space per cell, as was previously the case with winding technology.

Imagine it this way: in winding, the cell material is wrapped around a roll and squeezed together into a rectangular shell. During stacking, the electrode layers are superimposed to completely fill the rectangular space so that the cell has about 20 percent more active material, which increases the capacity. Cramming more electrons into the space equals overall improved range. A total of 12 battery cells form a module and 36 modules make up a battery system, protected by cube-shaped aluminum housing.

For the Q8 e-tron SUV and Sportback, Audi engineers created a battery pack that delivers about 20 kilowatt hours more gross capacity over 2023 models. Now, the battery offers 114 kWh instead of the 95 kWh on the previous battery tech. And incredibly, it doesn’t take up any more space than the old battery pack. As a result, 2024 Q8 e-tron owners can get 30 percent more range. The Q8 Sportback S-Line e-tron with the ultra package gets 300-plus miles. Even the standard Q8 e-tron SUV is good for 285 miles (296 for the Sportback) so it’s pretty close. 

The 2023 model served up a 222-mile EPA-estimated range for the standard SUV and 218 miles in Sportback form. For the 2024 Q8 e-tron, the EPA estimates it’s good for 285 miles for the SUV and 296 miles for the Sportback model. An optional Ultra package, available only with the Sportback, features a smaller wheel and tire package with low-rolling-resistance rubber and retuned suspension that gives it a lower ride height for added efficiency, and this setup delivers the magical 300-mile EPA estimate.

Pros and cons to stacking 

Like most new technologies, there are advantages and disadvantages to consider, Audi says. The advantage of this new stacking method allows for more active material to be implemented into lithium-ion cells, resulting in greater capacity, energy, and power. The disadvantage is a slower production process, resulting in higher cost.

Ultimately, Audi opted to prioritize the advantages over the disadvantages, a brand representative shared with PopSci.

Audi cell technicians had a dual goal of packing as much energy as possible into the stack while still having the ability to recharge it as quickly as possible. However, more density requires more time to charge compared to previous, less-dense batteries. This latest achievement also comes with a side of improved battery chemistry that Audi says has a better charge curve, which allows it to hold higher charging rates for longer.

At its battery testing site in Gaimersheim, Audi also runs a construction facility for prototype batteries. Here, employees build the high-voltage batteries from the ground up all the way to pre-series production. The goal for the next iteration will involve greater integration of the cells into the battery pack, reducing overhead, optimizing the battery’s design, and increasing the overall vehicle’s efficiency with the newest cell technologies.

The post How Audi designed its densest EV battery yet appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
EVs have a tire particle problem https://www.popsci.com/environment/problem-evs-tires/ Tue, 26 Sep 2023 01:00:00 +0000 https://www.popsci.com/?p=574186
6PPD is added to virtually all tires to prevent rubber from cracking.
6PPD is added to virtually all tires to prevent rubber from cracking. Deposit Photos

Heavier cars' tires release more tiny fragments into the environment.

The post EVs have a tire particle problem appeared first on Popular Science.

]]>
6PPD is added to virtually all tires to prevent rubber from cracking.
6PPD is added to virtually all tires to prevent rubber from cracking. Deposit Photos

This story was originally published by Grist. Sign up for Grist’s weekly newsletter here.

As gas-guzzling cars are replaced by their electric counterparts, tailpipe emissions are on the decline. But cars have other negative impacts on environmental health, beyond what comes out of their exhaust pipes.

One of the bigger, and lesser known, problems is tire pollution—or “tire and road wear particles,” in industry terminology.

Tires shed tiny particles with every rotation. Tire wear happens most dramatically during rapid acceleration, braking, and sharp turns, but even with the most conservative driving, particulate pollution is an unavoidable consequence of car use. And it’s a problem that’s poised to get worse as drivers transition to EVs.

“We’re pushing for decarbonization by going to battery electric vehicles, and in doing so we’re pushing up tire wear emissions … which is going to prove difficult to solve,” said Nick Molden, founder and CEO of Emissions Analytics, a London-based company that performs independent tests on cars’ real-world tailpipe and tire emissions. Molden pointed out that tailpipe exhaust is dramatically reduced by filters and catalytic converters, which use chemical reactions to reduce pollution. Meanwhile, tires are a fundamentally open system, so there is no viable way to capture the polluting particles that fly off of them.

Emissions Analytics found that a single car sheds almost nine pounds of tire weight per year, on average. Globally, that amounts to six million metric tons of tire pollution annually, with most of it coming from wealthier countries where personal car use is more prevalent.

The amount of tire pollution emitted per vehicle is increasing as more electric cars hit the road around the world—some 14 million of them this year, according to the International Energy Agency. EVs tend to be significantly heavier than gas-powered or hybrid cars due to their larger, heftier batteries. The average battery for an EV on the market today is roughly 1,000 pounds, with some outliers approaching 3,000 pounds—as much as an entire gasoline-powered compact car. Emissions Analytics has found that adding 1,000 pounds to a midsize vehicle increased tire wear by about 20 percent, and also that Tesla’s Model Y generated 26 percent more tire pollution than a similar Kia hybrid. EVs’ more aggressive torque, which translates into faster acceleration, is another factor that creates more tire particulate mile for mile, compared to similar internal combustion engine cars.

Tire particulate is a toxic slurry of microplastics, volatile organic compounds, and other chemical additives that enter the air, soil, and water around trafficked areas. The rubber, metals, and other compounds coming off tires settle along roads where rain washes them into waterways. Smaller bits of tire particulate linger in the air, where they can be inhaled, and the smallest of this particulate matter—known as PM 2.5, because each particle is 2.5 micrometers or less — can directly enter the bloodstream. A 2017 study estimated that tire wear is responsible for 5 to 10 percent of oceanic microplastic pollution, and 3 to 7 percent of airborne PM 2.5 pollution. 

One particularly concerning chemical in tires is 6PPD, which is added to virtually all tires to prevent rubber from cracking. But in the environment, 6PPD reacts with ozone to become 6PPD-quinone, a substance that has been linked to salmon die-offs in the Pacific Northwest. A 2022 study confirmed the compound is also lethal to rainbow trout and brook trout.

Further research has shown that the chemical is absorbed by edible plants like lettuce and has the potential to accumulate in them. A study in South China found both 6PPD and 6PPD-quinone in human urine samples. The human health effects of the chemical are not yet understood, but other chemicals found in tires have been linked to problems ranging from skin irritation to respiratory problems to brain damage.

Given the intensifying realities of climate change, phasing out gas-powered vehicles rapidly is a must. But experts say the U.S. and other wealthy countries can accomplish this while also mitigating the environmental and health problems caused by EVs’ increased tire wear—namely by curbing car use overall.

Foremost, local policymakers can take steps to make U.S. cities less cripplingly car-dependent. Although that might sound like a daunting task, there’s historical precedent: The Netherlands used to be dominated by cars and experienced a higher rate of traffic fatalities than the U.S., until activist groups like Stop de Kindermoord (“Stop Child Murder”) mobilized in the 1970s to let policymakers know that they wanted less traffic on their streets. According to Chris Bruntlett, the co-author of Building the Cycling City, policymakers created the low-traffic, bike-friendly Dutch cities we know today by instituting traffic-calming measures. “Officials started with speed-limit reductions, parking restrictions, through-traffic limitations, and lane narrowings and removals,” Bruntlett told Grist.

David Zipper, a mobility expert and a visiting fellow at the Harvard Kennedy School, says that city leaders can also remove subsidies for car ownership, such as free residential parking on public streets. “Once car subsidies are removed, fewer people in cities will choose to buy and own them,” Zipper said.

Of course, measures to reduce car use only work in tandem with investments in alternative transportation. The Infrastructure Investment and Jobs Act of 2021 provided some federal funding for transit and pedestrian and bike infrastructure, but making the most of these funds will require political will from state and local lawmakers. Zipper said that policymakers in some U.S. cities have begun to take positive actions—like Boston Mayor Michelle Wu, who has committed to expanding her city’s bike lane network until 50 percent of the population lives within a three-minute walk of a bike lane.

Another way to reduce tire pollution is to trade big, heavy cars for smaller and lighter ones. Especially in the U.S., cars have grown significantly in size and weight in recent decades. Automakers began promoting SUVs in the 1980s, because a legal loophole allowed vehicles designated as “light trucks” to skirt fuel-efficiency regulations. Nine out of the 10 best-selling cars in the U.S. last year were trucks or SUVs, and the International Energy Agency has found that SUVs were the second largest cause of the global rise in CO2 emissions between 2010 and 2018.

One legislative solution to car bloat is introducing weight-based vehicle taxes, which encourage consumer interest in lighter cars and can be used to offset the cost of increased wear on roads caused by heavier vehicles. France implemented a weight-based car tax in 2021, charging consumers a penalty of 10 euros (about $10) for every kilogram above 1,800 (about 4,000 pounds) that their car weighs. This year, Norway also extended its weight-based vehicle tax to include EVs at a rate of a little more than a euro per kilogram above the first 500 kilograms (about 1,100 pounds) for EVs. Norway also taxes vehicles on their carbon dioxide and nitrogen oxides emissions. Taken together, these three taxes have the combined effect of dramatically incentivizing small electric vehicles

In the U.S., some states already prorate vehicle registration fees based on weight, and Washington, D.C. recently overhauled its registration system to more heavily penalize larger cars. In D.C., owners of cars heavier than 6,000 pounds now have to pay $500 in annual fees. New York state lawmakers also recently introduced legislation that would similarly incentivize smaller cars.  

Regulators can also take steps to minimize the harm caused by tire pollution — and in California, the process has already begun. In October, a new regulation implemented by the state’s Department of Toxic Substances Control, or DTSC, will require manufacturers of tires on the California market to research safer alternatives to 6PPD. Manufacturers that sell tires in the state are obligated to notify DTSC about products containing 6PPD by the end of November. 

Karl Palmer, deputy director of safer consumer products at DTSC, believes that making tire makers conduct an “alternatives analysis” will ultimately result in products that are safer for the environment.

“We’re using California’s market strength to say, ‘If you want to park here, you’ve got to comply with our rules,’” Palmer told Grist.

This article originally appeared in Grist at https://grist.org/transportation/evs-are-a-climate-solution-with-a-pollution-problem-tire-particles/.

Grist is a nonprofit, independent media organization dedicated to telling stories of climate solutions and a just future. Learn more at Grist.org

The post EVs have a tire particle problem appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Here is what a Tesla Cybertruck cop car could look like https://www.popsci.com/technology/cybertruck-cop-car/ Fri, 22 Sep 2023 17:15:00 +0000 https://www.popsci.com/?p=573563
Tesla Oracle Cybertruck cop car concept art
The Cybertruck has face multiple release delays and production issues. Oracle/YouTube

Concept art was revealed at a Las Vegas conference this week.

The post Here is what a Tesla Cybertruck cop car could look like appeared first on Popular Science.

]]>
Tesla Oracle Cybertruck cop car concept art
The Cybertruck has face multiple release delays and production issues. Oracle/YouTube

Tesla’s Cybertruck isn’t even available to the public yet, but concept art for a Cybertruck cop-car made its appearance in Las Vegas on Wednesday. During a presentation by Oracle co-founder Larry Ellison at the data service giant’s CloudWork conference, a massive screen showed off the EV’s recognizable, angular design beneath red and blue emergency lights, as well as a bull bar and multiple Oracle logos.

But as Inside EVs noted on September 21, the rendering features misplaced bumper lights and rear wheels, while also missing the vehicle’s single, massive windshield wiper. Although this could indicate the project is early on in its development, Ellison promised its imminent debut.

“Our next generation police car is coming out very soon,” Ellison said to audible audience murmurs. “It’s my favorite police car. It’s my favorite car, actually. It’s Elon’s favorite car.” 

[Related: What TikTok’s deal with Oracle could mean for user security.]

“Among other things, it’s very safe, very fast, it’s got a stainless steel body, and we don’t have to add a screen or cameras to it because we can actually use their existing cameras and existing screen to put our application on it,” Ellison continued.

Both Oracle and Tesla already work alongside law enforcement, providing cloud support software and electric vehicles, respectively, for forces in Wisconsin, California, and elsewhere. Ellison has also called Musk a “close friend” in the past, and previously sat on Tesla’s board of directors. According to Ellison’s presentation, the first Oracle-integrated police cars already include voice-activated, retrofitted third-party “Tesla-like” screens, but the company plans to leverage the Cybertruck’s existing camera systems and monitors. 

First unveiled in 2019 and promised to arrive in 2021, Tesla has since delayed the Cybertruck multiple times while also increasing its estimated price tag. At last check, production and delivery were slated to begin by the end of 2023, although that deadline now appears dubious. During the EV’s debut event, Tesla vehicle designer Franz von Holzhausen threw metal balls at a prototype Cybertruck to demonstrate its “Armor Glass” windows, causing the driver side windows to shatter.

“The ball didn’t make it through,” Musk joked at the time.

The post Here is what a Tesla Cybertruck cop car could look like appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
How car-sharing programs could make electric vehicles more accessible https://www.popsci.com/technology/evs-car-share/ Tue, 19 Sep 2023 01:00:00 +0000 https://www.popsci.com/?p=571663
Los Angeles is among the cities that have brought electric vehicle car sharing to frontline communities. The service provides dozens of cars and a network of chargers throughout the city.
Los Angeles is among the cities that have brought electric vehicle car sharing to frontline communities. The service provides dozens of cars and a network of chargers throughout the city. Mark Ralston / AFP via Getty Images

Car shares not only make EVs more equitable, they reduce the number of vehicles on the road and the resources needed to decarbonize transport.

The post How car-sharing programs could make electric vehicles more accessible appeared first on Popular Science.

]]>
Los Angeles is among the cities that have brought electric vehicle car sharing to frontline communities. The service provides dozens of cars and a network of chargers throughout the city.
Los Angeles is among the cities that have brought electric vehicle car sharing to frontline communities. The service provides dozens of cars and a network of chargers throughout the city. Mark Ralston / AFP via Getty Images

This story was originally published by Grist. Sign up for Grist’s weekly newsletter here.

Gloria Huerta remembers the day she spent hours hopping between Chevy Bolts, messing with SIM cards and software while following instructions sent by a German tech firm. She was trying to fix a glitch that kept members of Miocar, the car-share program she helps lead, from unlocking the cars before the service’s formal launch. Troubles like these would make it difficult for her organization to fulfill its mission of providing equitable access to electric vehicles in rural California. 

Much has changed since that frustrating day four years ago. Back then, it wasn’t unusual for Huerta, who is now the nonprofit’s chief operating officer, to spend hours driving across the state’s San Joaquin Valley servicing vehicles and solving members’ problems. Today, Miocar has a dedicated team to service its fleet of three Nissan Leafs and 34 Bolts spread across 10 locations (it plans to add more cars and locations by the end of the year) while offering guidance to anyone interested in establishing a community-based car share.

Zero-emissions vehicles are essential to achieving global climate goals. But climate policy experts warn that a one-to-one shift from gas to electric cars could exacerbate other forms of social injustice. Such a change could, for example, fuel environmental degradation and worker exploitation in the Global South, where most of the metals needed for batteries are mined. Here at home, people with low incomes struggle to afford EVs, even with ample incentives. Others are often unfamiliar with technology that’s typically targeted at the affluent. Those who can afford the cars often have precious few places to plug them in

 “I think it’s great that we’re moving towards zero-emissions vehicles,” Huerta said, “but the communities that are continuously left behind are still being left behind.”

To avoid such potholes, a growing number of programs like Miocar are forging an equitable path to zero-emissions transportation by making battery-powered cars accessible to everyone. (Huerta says Miocar is a play on “the Spanglish of the San Joaquin Valley” that tags the Spanish word for “mine” to the word “car.”) Such efforts have emerged in locations as diverse as Boston’s Roxbury neighborhoodMinneapolis-Saint Paul, and Los Angeles, bolstered in part by state and local assistance. Earlier this year, for example, the Washington state Department of Transportation awarded $2.8 million to spur EV car-share efforts in low-income communities statewide. 

Beyond enabling a just transition and reducing the number of vehicles—and resources—needed to electrify transportation, electric car sharing represents a shift away from an economy of ownership to one of access, allowing people to embrace environmentally conscious mobility without the burden of buying a car.

What sets community-based nonprofits like Miocar apart from international for-profits like ZipCar is its focus on offering zero emissions vehicles to income-qualified users at reduced rates—often just $4 to $10 an hour. Cars are reserved online, charged up, and can be used for as long as 24 or even 48 hours, depending on the program. For some folks, it’s an easy way of running an errand, taking a pet to the vet, or simply getting somewhere beyond the bus line. For others, it’s an opportunity to get comfortable with an EV before buying one of their own.

With most of Miocar’s users having never so much as sat in an EV before signing up, some are uncertain, even intimidated, at first. Huerta says the most common concern is that the battery might die. But Miocar, like other EV car shares, ensures its cars are charged, and provides dedicated parking spaces with chargers. People are expected to plug in when they drop off. If they forget, there’s a warning, and repeated offenses result in small fines. To further alleviate the anxiety of exhausting the battery, Miocar employees, when orienting newcomers to the program, explain how to plan a trip and find chargers that accept the free charge cards provided with each vehicle.

Once they start driving, users tend to love the vehicles for their ease, quiet, and comfort. “I’ve had conversations with a few that are like, ‘Oh my God, I never knew how much I would enjoy driving this,’” Herta said. When that happens, Miocar connects users to organizations that can explain the tax credits and other incentives that defray the cost of buying an EV, which can go for an average of $61,488 new.

Of course, when people rely on car-share programs instead of purchasing a vehicle of their own, traffic and street congestion drops. In 2016, researchers at the University of California-Berkeley Transportation Sustainability Research Center found that for every car-share vehicle deployed, 7 to 11 others were taken off the road or never put there in the first place. Such findings have been repeatedly supported as these programs have grown. 

That said, not everyone can ditch their car. A personal vehicle isn’t so much a luxury as a necessity in rural areas, Huerta said. That’s why Miocar’s mission is guided by the question, “How are we going to be able to do this in an equitable manner where everyone is able to get the same access to resources?”

These programs bridge an essential gap. Low-income communities are not only supermarket and pharmacy deserts; they’re charging deserts, too. Although there is a great need for equitable charging infrastructure, Susan Buchan, the executive director of Good2Go, Boston’s EV car share, said building chargers in frontline communities solves just half the problem. The communities need easy and affordable access to electric vehicles to make the chargers more than just harbingers of green gentrification.

“I’ve heard folks say that it’s kind of a slap in the face to watch somebody pull up in a Tesla, charge, and take off,” she said.

Still, bringing equity-focused car shares online can be a bumpy road. Beyond the technical hassles and occasional vehicle recalls, the economic challenges are formidable. “For public-backed car sharing, one of the biggest barriers is funding,” said Lauren McCarthy, a program director at the nonprofit Shared Use Mobility Center. “They’re not usually profitable operations.” Buchan concurred: “Achieving your mission makes you have a more negative balance sheet in this gig.”

Typically, public funding is available only during the pilot and lasts just a few years. That’s why McCarthy—who oversees a state-backed program in California that provides voucher funding to support shared-mobility initiatives—and the Shared Use Mobility Center offer a year of assistance after initial funding ends to help programs achieve financial sustainability.

Insuring the vehicles is a major hurdle on that path: “Our number one line item,” Buchan said. Despite requiring that drivers be over 21 and possess a clean driving record, Massachusetts places car shares like Good2Go in the highest risk category, driving up premiums. Other states, including California and Minnesota, have more relaxed policies, but McCarthy considers insurance requirements an obstacle to the expansion of shared mobility.

Outreach can be another challenge. In 2021, when Good2Go launched, it struggled with enrollment. The program revamped its efforts the following year, organizing catered events at affordable housing complexes to give residents an opportunity to drive their cars. Membership jumped 300 percent to 160 people, ensuring its fleet of six vehicles gets ample use. Buchan expects the growth to continue as long as the program can continue providing enough vehicles to meet demand.

As more programs like these appear, grow, and become self-sustaining, they have the potential to shift the default means of mobility. “The premise of private car ownership doesn’t need to define our society,” McCarthy said. “There should be multiple options available to you.” In a world of shared transportation, picking up a community-owned car would be one of these options, as would busing, walking, or grabbing a bike or scooter from the sidewalk. As long as our cities are designed to support these programs, an equitable future for clean mobility would look like one in which access takes priority over ownership, and in which we share to show how much we care.

This article originally appeared in Grist at https://grist.org/equity/a-simple-way-to-make-electric-cars-more-accessible-share-them/.

Grist is a nonprofit, independent media organization dedicated to telling stories of climate solutions and a just future. Learn more at Grist.org

The post A rapid shift to electric cars would save 89,000 lives appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
The world’s first self-driving ferry is now in service https://www.popsci.com/technology/sweden-autonomous-electric-ferry/ Tue, 13 Jun 2023 19:00:00 +0000 https://www.popsci.com/?p=548227
Zeabuz ferry
A self-driving ferry pushes off this week. Zeabuz

The MF Estelle is part of a plan to create environmentally friendly transportation alternatives on the water.

The post The world’s first self-driving ferry is now in service appeared first on Popular Science.

]]>
Zeabuz ferry
A self-driving ferry pushes off this week. Zeabuz

The world’s first self-driving commercial passenger ferry started operating this week in Stockholm, Sweden. The MF Estelle was built by Zeabuz, a Norwegian start up, and will be operated by Torghatten, a Swedish ferry company under the brand name Zeam (Zero Emission Autonomous Mobility). It’s one of the first truly practical, real world examples of autonomous transportation that we’ve seen. 

The MF Estelle is both autonomous and electric. Its electric propulsion system is powered by solar panels on the top of the vessel. In the press release announcing the partnership, Stein Andre Herigstad-Olsen, CEO of Torghatten, said that “Estelle is a sustainable and green pioneer, offering a solution to traffic congestion and inspiring alternative modes of transportation.” It is the first step in the company’s plan to “create a network of virtual bridges, utilizing waterways to alleviate road congestion and promote affordable, environmentally friendly, and safe urban mobility.” 

While the MF Estelle will initially have an operator on board to make sure everything goes smoothly, Torghatten and Zeabuz intend for it to operate fully autonomously with an onshore supervisor by 2024. According to Zeabuz, multiple vessels using its ZeaMaster technology can be supervised by a single onshore supervisor, in much the same way that one of Wing’s pilots can manage multiple delivery drones. During normal operations, each vessel is able to safely navigate itself. When something unexpected happens, the “risk-aware supervisory control algorithm” makes sure the vessel adapts by slowing down, allowing more space in the waterway, stopping in place, and alerting the operator that a decision on how to proceed is needed. Seemingly, Torghatten is confident that the system is sufficient for busy city waterways shared with other vessels, canoes, kayaks, stand up paddle boarders, and even swimmers. 

Starting this week, the ferry will depart twice an hour from each side of the Riddarfjärden bay, crossing between Kungsholmen and Södermalm, two of the major island-districts in central Stockholm. Torghatten intends to extend that to four departures from each side each hour, and operate it for 15 hours a day. That’s a total of 120 daily sailings, each capable of transporting up to 24 passengers. Tickets cost 35 Swedish Krona (~$3.25).

While the MF Estelle is the first commercially operated passenger ferry, it isn’t the only electric autonomous vessel in development. Hurtigruten Norway hopes to have a zero-emission cruise ship in the water by 2030. It would be propelled by 50m-high sail wings (164 feet) as well as an electric engine system. It will also have multiple large batteries that are recharged by solar panels, wind technology, and the electric grid when it’s in port. 

Last summer, in a first for autonomous vehicles, the Mayflower Autonomous Ship successfully crossed the Atlantic Ocean without human crew. The trip wasn’t without issue—it was bound for Virginia but actually had to end its40-day 3,500 mile journey in Halifax, Nova Scotia. 

And, of course, militaries are interested in these kinds of vessels too. Both the Colombian Navy and the US Navy have openly discussed how electric unmanned vessels could play a major role in future military operations—and are actively developing them. 

For now though, the MF Estelle still stands in a class of her own. If you’re in Stockholm, you can take a passage on the first autonomous electric ferry with no apps, NDAs, or other hassle. 

The post The world’s first self-driving ferry is now in service appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Volvo’s new electric EX30 is cheaper than a Tesla Model 3 https://www.popsci.com/technology/volvo-ex-30/ Mon, 12 Jun 2023 21:30:00 +0000 https://www.popsci.com/?p=548042
volvo ex30 EV
The EX30 will be delivered to customers next year. Volvo

This stylish new EV comes from an automaker known for safety—and it costs around $36,000.

The post Volvo’s new electric EX30 is cheaper than a Tesla Model 3 appeared first on Popular Science.

]]>
volvo ex30 EV
The EX30 will be delivered to customers next year. Volvo

When folks think about Volvo, the first thing that comes to mind is probably the brand’s reputation for safety features. After all, it developed and patented the modern three-point seat belt in 1959 and then shared the design with the world. Inexpensive cars, not so much. 

However, Volvo is making a statement with its newest EV, the EX30. This super-modern compact electric SUV is packaged competitively at $36,145 to start; that’s more than the outgoing Chevrolet Bolt but less than Tesla’s least expensive EV, the Model 3. Sure, the base Nissan Leaf is still priced under $30,000, but that’s with the smaller battery pack and only 149 miles of all-electric range. The EX30 promises a more luxurious feel than Nissan’s EV and offers a huge difference in range, at 275 miles.

Can Volvo’s streamlined five-seat EV compete? If we shake the Magic 8-Ball, all signs point to yes. Here’s why. 

Outlook good

As Inside EVs reported in March, Volvo set a record for sales in February, moving 51,286 cars worldwide that month. That’s 22 percent more than February 2022 and the best February ever for the brand. Even more telling is its numbers in the plug-in electric car segment: Volvo sold 20,678 plug-ins, an impressive 40 percent of total volume.

The timing seems to be spot on. In April of this year, Chevrolet sounded the death knell of its diminutive Bolt EV with no room for resurrection. Like the college kid who comes home for Christmas to find out his parents turned his bedroom into a supersized home gym, GM will soon retool the production line for the Bolt models to make space for the much-larger electric Silverado pickup and its sibling, the GMC Sierra EV. The introduction of electric trucks is important to the US market, and Chevy is pouring its resources in that direction, pushing the smaller Bolt out even as the tiny EV’s sales started to peak.

Now, the Bolt is kaput. Enter, stage right: the Volvo EX30, which is the fourth EV model for the Swedish brand. Volvo debuted its XC40 Recharge EV for model year 2021, the C40 Recharge EV for 2022, and a three-row SUV (the EX90) is on the way. Volvo, it seems, is ramping up for EVs quickly and steadily. 

The EX30 interior.
The EX30 interior comes from an automaker known for simple but luxurious interiors. Volvo

Can the EX30 outsell Tesla? Reply hazy, try again

The EX30 is about three inches longer and three inches wider than the Bolt EV, giving the Volvo a more commanding presence on the road than its Chevy competitor. Volvo’s new EV is 18 inches shorter than Tesla’s Model 3, but it wins in the cargo category with 31.9 cubic feet of available space, significantly more than the Model 3’s 22.9 cubic feet (truck and front trunk). 

From a power perspective, the EX30 comes with a 268-hp rear-drive setup; a 428-hp all-wheel-drive upgrade is available. Compared to the Bolt, which was good for 200 horsepower and 266 pound-feet of torque, the EX30 is considerably peppier, and Volvo says its Twin Motor Performance model will sprint to 100 kilometers (62 miles) per hour in a zippy 3.6 seconds. That’s only a tiny bit slower—0.1 seconds—than the Model 3 Performance. 

Here’s where the EX30 shines over both Tesla and Chevy’s EVs: the inside. Volvo prides itself on simple but luxurious interiors and the EX30 makes the most of its space and price point with a 12.3-inch touchscreen, a full-width sound bar on the dashboard that replaces embedded speakers, and recycled materials throughout. 

Getting more Americans to snap up electric vehicles and reap their environmental benefits means automakers need to produce affordable ones that are accessible to more people. Right now, the EX30’s price tag will make it one of the least expensive on the US market. One forthcoming bit of competition, besides from Nissan and Tesla, may come in the form of the Chevy Equinox EV, which will likely cost around $30,000, and Chevrolet says its range will reach the desired 300-mile mark. 

Every time a new EV hits the market, headlines proclaim “it’s a Tesla killer” and no doubt some will believe that’s true of the EX30 as well. The reality is that Tesla’s legions of fans aren’t going anywhere, and are unlikely to be swayed to the Swedish side. Volvo will likely catch the attention of new EV buyers looking for a solidly built car stocked with technology and safety features in a small luxury package.

The post Volvo’s new electric EX30 is cheaper than a Tesla Model 3 appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
GM’s new partnership with Tesla could supercharge the EV landscape https://www.popsci.com/technology/gm-tesla-electric-vehicle-charging/ Fri, 09 Jun 2023 17:00:00 +0000 https://www.popsci.com/?p=547443
A close-up view of the front fender badge and charge door on a Cadillac LYRIQ parked at a Tesla Supercharger station.
GM's announcement follows a similar strategy from Ford last month. General Motors

Following Ford's footsteps, GM owners can begin using Tesla Supercharger Stations early next year.

The post GM’s new partnership with Tesla could supercharge the EV landscape appeared first on Popular Science.

]]>
A close-up view of the front fender badge and charge door on a Cadillac LYRIQ parked at a Tesla Supercharger station.
GM's announcement follows a similar strategy from Ford last month. General Motors

Two weeks ago, Ford took a major step forward within the EV market via a new partnership with Tesla. The new plan will soon open up the latter’s charging stations to Mustang Mach-E, F-150 Lightning and E-Transit owners. Following in their tire tracks, General Motors announced a similar alliance on Thursday—beginning early next year, GM owners will also be able to access over 12,000 Tesla Supercharger stations through a special adapter. And starting in 2025, all new electric GM models will come equipped to charge without the need for any external attachments.

“This collaboration is a key part of our strategy and an important next step in quickly expanding access to fast chargers for our customers,” GM Chair and CEO Mary Barra said in a statement. “Not only will it help make the transition to electric vehicles more seamless for our customers, but it could help move the industry toward a single North American charging standard.”

[Related: Ford EVs can soon be charged at Tesla stations.]

The move towards a single standard is a tacit concession to Tesla’s overall industry footprint, says CNBC. Although most EVs in America have long utilized what’s known as Combined Charging System (CCS) ports for fast recharging, Tesla vehicles rely on a proprietary setup known as the North American Charging Standard (NACS), alongside adapters owners could use at third-party stations. Beginning in late 2021, Tesla opened up some of its superchargers to other EVs thanks to a “Magic Dock” adapter, although anyone wishing to use it still needed to download Tesla’s app for access.

Like Ford, GM’s partnership will both simplify charging options for consumers as well as pave the way for more standardized infrastructure that supports the growing EV industry. Beginning in early 2024, owners of vehicles such as the Cadillac Lyriq and Chevy Bolt will be able to recharge at Tesla outlets using a specialized adapter, with new GM EVs featuring a NACS inlet sans adapter aiming to debut in 2025. Additionally, GM aims to integrate the Tesla Supercharger Network into its brands’ mobile apps to streamline location, payment, and charging sessions. GM also eventually intends to make CCS adapters for owners of NACS-enabled vehicles, although has not specified a timeframe for the rollout.

GM isn’t only looking to Tesla to help expand charging access for EVs—last year, the company partnered with Pilot Company and EVgo to add over 5,000 new DC chargers to the almost 13,000 stations already available across North America. An estimated one-fourth of all vehicle sales are estimated to be EVs by the end of 2030, with that number skyrocketing to over 70 percent by 2040. 

The post GM’s new partnership with Tesla could supercharge the EV landscape appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
This concept cruise ship will have solar-paneled sails, an AI copilot, and zero emissions https://www.popsci.com/technology/hurtigruten-zero-emission-ship/ Wed, 07 Jun 2023 17:00:00 +0000 https://www.popsci.com/?p=546520
Sea Zero Cruise ship Concept, sails fully extended
The ship's three retractable sails will be covered in solar panels. VARD Design

Hurtigruten Norway hopes to have their sustainable liner hit the high seas by 2030.

The post This concept cruise ship will have solar-paneled sails, an AI copilot, and zero emissions appeared first on Popular Science.

]]>
Sea Zero Cruise ship Concept, sails fully extended
The ship's three retractable sails will be covered in solar panels. VARD Design

Today’s cruise ships are environmental nightmares. Just one vessel packed with a veritable petri dish of passengers can burn as much as 250 tons of fuel per day, or about the same emissions as 12,000 cars. If the industry is to survive, it will need to adapt quickly in order to adequately address the myriad ecological emergencies facing the planet—and one Norwegian cruise liner company is attempting to meet those challenges head-on.

Earlier today, Hurtigruten Norway unveiled the first designs for a zero-emission cruise ship scheduled to debut by the end of the decade. First announced in March 2022 as “Sea Zero,” Hurtigruten (Norwegian for “the Fast Route”) showed off its initial concept art for the craft on Wednesday. The vessel features three autonomous, retractable, 50m-high sail wing rigs housing roughly 1,500-square-meters of solar panels. Alongside the sails, the ship will be powered by multiple 60-megawatt batteries that recharge while in port, as well as wind technology. Other futuristic additions to the vessel will include AI maneuvering capabilities, retractable thrusters, contra-rotating propellers, advanced hull coatings, and proactive hull cleaning tech.

[Related: Care about the planet? Skip the cruise, for now.]

“Following a rigorous feasibility study, we have pinpointed the most promising technologies for our groundbreaking future cruise ships,” said Hurtigruten Norway CEO Hedda Felin. Henrik Burvang, Research and Innovation Manager at VARD, the company behind the ship concept designs, added the forthcoming boat’s streamlined shape, alongside its hull and propulsion advances, will reduce energy demand. Meanwhile, VARD is “developing new design tools and exploring new technologies for energy efficiency,” said Burvang.

With enhanced AI capabilities, the cruise ships’ crew bridge is expected to significantly shrink in size to resemble airplane cockpits, but Hurtigruten’s futuristic, eco-conscious designs don’t rest solely on its next-gen ship and crew. The 135-meter-long concept ship’s estimated 500 guests will have access to a mobile app capable of operating their cabins’ ventilation systems, as well as track their own water and energy consumption while aboard the vessel.

Concept art of zero-emission cruise ship sailing in Norway
Credit: VARD Design

Next up for Hurtigruten’s Sea Zero project is a two-year testing and development phase for the proposed tech behind the upcoming cruise ship, particularly focusing on battery production, propulsion, hull design, and sustainable practices. Meanwhile, the company will also look into onboard hotel operational improvements, which Hurtigruten states can consume as much as half a ship’s overall energy reserves.

Hurtigruten also understands if 2030 feels like a long time to wait until a zero-emission ship. In the meantime, the company has already upgraded two of its seven vessels to run on a battery-hybrid-power system, with a third on track to be retrofitted this fall.  Its additional vessels are being outfitted with an array of tech to CO2 emissions by 20-percent, and nitrogen oxides by as much as 80 percent.

The post This concept cruise ship will have solar-paneled sails, an AI copilot, and zero emissions appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
The US doesn’t have a law mandating EV battery recycling. Should it? https://www.popsci.com/technology/ev-battery-recycling-law-mandate/ Fri, 02 Jun 2023 01:00:00 +0000 https://www.popsci.com/?p=545067
Eventually, a robust circular battery economy could all but eliminate the need to extract rare metals at all.
Eventually, a robust circular battery economy could all but eliminate the need to extract rare metals at all. Alyssa Pointer / The Washington Post via Getty Images

Recycling batteries could reduce the need to mine critical minerals—but only if the packs are properly recovered.

The post The US doesn’t have a law mandating EV battery recycling. Should it? appeared first on Popular Science.

]]>
Eventually, a robust circular battery economy could all but eliminate the need to extract rare metals at all.
Eventually, a robust circular battery economy could all but eliminate the need to extract rare metals at all. Alyssa Pointer / The Washington Post via Getty Images

This story was originally published by Grist. Sign up for Grist’s weekly newsletter here.

The race to electrify the world’s vehicles and store energy will require batteries — so many of them, in fact, that meeting the demand we will see by 2040 will require 30 times the amount of critical minerals like lithium, cobalt, and nickel that those industries currently use.

That presents an enormous challenge, one exacerbated by the mining industry’s alarming allegations of labor crimes, environmental destruction, and encroachments on Indigenous land. There are ways to mitigate electrification’s extractive impacts, one of which may seem obvious: Recycle every battery we make. 

Doing so would reduce the world’s need to mine these minerals by 10 percent within 16 years, because the critical materials in batteries are infinitely reusable. Eventually, a robust circular battery economy could all but eliminate the need to extract them at all.

Of course, that would require recovering every EV pack at the end of its life, a sizable undertaking as the United States prepares for hundreds of thousands of electric vehicles to retire by the end of the decade. A nascent ecosystem of startups is working toward that goal, and the Inflation Reduction Act includes tax credits to incentivize the practice. But some electrification advocates say those steps do not go far enough. While the European Union recently passed a regulation mandating EV battery recycling, there is no such law in the U.S. Proponents of a federal recycling standard say that without one, batteries that could be recycled might get left behind, increasing the need for mining and undermining electrification’s environmental benefits. 

“We need a coordinated federal response to truly have a large-scale impact on meeting our demand,” said Blaine Miller-McFeeley, a policy advocate at Earthjustice, which favors a federal recycling requirement. “If you compare us to the EU, we are woefully behind and need to move much more quickly.”

That movement would have to come from Congress, according to Miller-McFeeley. Historically, however, regulating recycling has been left up to the states and local jurisdictions. The Biden administration has instead been supporting the country’s budding EV battery recycling industry, mainly by making it good business to recover critical materials. 

The Department of Energy wants to establish a “battery ecosystem” that can recover 90 percent of spent lithium batteries by 2030. It has granted billions in loans to battery recyclers to build new facilities. Automakers are incentivized to buy those recyclers’ products, because part of the federal EV tax credit applies only to cars with batteries that include a minimum amount of critical minerals that were mined, processed or recycled in the U.S. or by a free-trade partner. Manufacturers also get a tax credit for producing critical materials (including recycled ones) in the U.S.

Daniel Zotos, who handles public advocacy at the battery recycling startup Redwood Materials, said in an email that a healthy market for recycled materials is emerging. “Not only is there tremendous value today in recycling these metals, but the global demand for metals means that automakers need to source both more mined and recycled critical minerals.”

Zotos said Redwood Materials agrees with the approach the federal government has taken. “The U.S. has in fact chosen to help incentivize, rather than mandate, recycling through provisions established in the Inflation Reduction Act, which we’re deeply supportive of.”

During a pilot project in California last year, the company recovered 95 percent of the critical materials in 1,300 lithium-ion and nickel metal hydride EV and hybrid batteries. The cost of retrieving packs from throughout the state was the biggest barrier to profitability, but Zotos said that expense will subside as the industry grows.

A tiny but growing secondary market for EV batteries is also driving their reuse. Most batteries will be retired once their capacity dwindles to about 70 to 80 percent, due to the impact on the car’s range. But they’re still viable enough at that point to sustain a second life as storage for renewable energy like wind and solar power. 

B2U Storage Solutions used 1,300 retired batteries from Nissan and Honda to create 27 megawatts hours of storage at its solar farm just north of Los Angeles in Lancaster, California. Photovoltaic panels charge the packs all day, and B2U sells the stored power to the local utility during peak demand in the evening. “There is more value in reuse,” said company president Freeman Hall, “and we’re not doing anything more than deferring recycling another four or five years.” 

Homeowners and hobbyists are embracing second-life batteries, too. Henry Newman, co-owner of the auto dismantler EV Parts Solutions in Phoenix, said customers buy his Tesla and Nissan Leaf batteries to convert classic cars or create DIY power storage at home. Any batteries that Newman can’t sell are picked up by Li-Cycle, a lithium-ion battery recycler with a plant in Gilbert, Arizona. 

Newman said dismantlers and customers seem to want to do the right thing. “I know there will be people who don’t follow regulation, but my experience in the last six to seven years is that the industry is pretty conscious of it and tries to mitigate throwing these things in the trash,” he said. A law could help prevent mishandling, but Newman worries about any overreach or added costs that would come with more regulation. 

But relying on the market to ensure proper stewardship is risky, said Jessica Dunn, a senior analyst in the clean transportation program at the Union of Concerned Scientists. “The recycling of cars has traditionally been a market-based environment,” she said. “But we’re dealing with a completely different system now. EV batteries are big and have a lot of critical materials in them that we need to get out of them no matter if it’s economical or not.” 

Transporting EV batteries, which can weigh more than 1,500 pounds, is expensive (as much as one-third of the cost of recycling them), dangerous, and logistically challenging. Packs can catch fire if improperly handled, and they are classified as hazardous material, which requires special shipping permits. If the battery is in a remote location or is damaged, a recycler could deem it too much trouble to retrieve without a mandate to do so.

Dunn also said that not all batteries contain enough valuable materials for it to make financial sense to go through the trouble of recovering them. While most EV batteries currently contain high-value cobalt and nickel, a new generation of cheaper lithium-ion-phosphate, or LFP, batteries don’t use those metals. Tesla, Ford, and Rivian all recently announced they will use LFPs in some models.

“Just because there aren’t nickel and cobalt in them doesn’t mean that the lithium isn’t something that we should be recovering,” said Dunn. Redwood Materials said it collects lithium-ion phosphate batteries and uses the lithium within them to assemble new battery components, and that they collect all battery packs no matter their condition.

Finally, without guidelines in place, viable batteries may not be repurposed before being recycled, which Dunn said undermines their sustainability. “You’ve already put all that literal energy — and the environmental impacts that go along with that — into manufacturing these batteries,” she said. “So if you can squeak an extra five to 10 years out of them, that’s a really good option.” 

With the U.S. poised to see about 165,000 electric vehicle batteries retire in 2030, Dunn said the time to ensure no batteries are stranded is now. “We’re not seeing a big wave now, but that’s coming, and so we need to be prepared for that.”

There has been some federal movement toward a recycling requirement. The 2021 bipartisan Infrastructure Investment and Jobs Act directed the Department of Energy to establish a task force to develop an “extended battery producer responsibility framework” to address battery design, transport, and recycling.

Extended producer responsibility, or EPR, is the approach that the EU took in its battery regulation that passed last December. EPR puts the onus on the manufacturer to ensure that what they produce is properly repurposed and then recycled, either by compelling them to pay for the recycling or to handle it themselves. 

Thirty-three states have such laws, covering 16 products ranging from mattresses to packaging. “It is a paradigm shift for how waste is managed in the United States,” said Scott Cassel of the Product Stewardship Institute. But Congress has never passed such a law. 

EV battery recycling might be the issue that could garner bipartisan support for one. Access to critical materials is a foreign policy and national security issue: China processes more than half the world’s lithium and cobalt, which means a steady domestic supply from recycling would help alleviate dependency on a geopolitical rival. 

Building out the infrastructure to dismantle, recover, and process battery materials could also create thousands of jobs, an accomplishment most lawmakers are happy to align themselves with.  

Republican senators alluded to both benefits when supporting the bipartisan Strategic EV Management Act of 2022, which passed as part of the National Defense Authorization Act last year. It requires multiple agencies to work on guidelines for “reusing and recycling” batteries from vehicles retired from the federal fleet. 

Republican Senator Bill Hagerty of Tennessee said in a statement that the bill would ensure agencies could “reap the full economic benefits of EV investments … and do so in a manner that lessens our dependence on communist China.” 

These laws set in motion efforts to design recycling frameworks, but the timelines to develop them span years. In the meantime, a few states are weighing their own mandates. “The states don’t want to wait for any of these bills to move,” Cassel said. “They’re ready to act right now.”

In California, a Senate bill would require battery suppliers to ensure that all “vehicle traction batteries” be recovered, reused, repurposed, or recycled. The bill passed unanimously this week and is headed to the Assembly. Senator Ben Allen, who introduced the bill, said there is bipartisan political and industry support for creating a framework. “You need a system in place,” he said. “That’s like saying, ‘Oh, the people will drive just fine to and from work. We don’t need traffic laws.’” 

As it has been with other clean-vehicle targets, California could be a bellwether for a standard that would eventually take hold nationally.

“We’d love to create a system that could help to inform national policy,” said Allen. “And in this case, with this industry support and bipartisan backing, there actually may be a blueprint here.”

This article originally appeared in Grist at https://grist.org/technology/the-u-s-doesnt-have-a-law-mandating-ev-battery-recycling-should-it/. Grist is a nonprofit, independent media organization dedicated to telling stories of climate solutions and a just future. Learn more at Grist.org

The post The US doesn’t have a law mandating EV battery recycling. Should it? appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
The Dallas airport is testing out EV charging bots that roll around like suitcases https://www.popsci.com/technology/ziggy-ev-charging-robot-dallas-airport/ Wed, 31 May 2023 22:00:00 +0000 https://www.popsci.com/?p=544933
ZiGGY mobile EV charger connected to vehicle in parking lot.
ZiGGY will show off its skills this summer at Dallas-Fort Worth International Airport. EV Safe Charge/YouTube

Mobile EV charging stations may soon juice up travelers' parked cars while they're flying high.

The post The Dallas airport is testing out EV charging bots that roll around like suitcases appeared first on Popular Science.

]]>
ZiGGY mobile EV charger connected to vehicle in parking lot.
ZiGGY will show off its skills this summer at Dallas-Fort Worth International Airport. EV Safe Charge/YouTube

One of the world’s busiest airports will soon showcase an innovative, undeniably cute way to speed up travelers’ entrances and exits. First announced earlier this month, Dallas Fort Worth International Airport (DFW) is partnering with EV Safe Charge to demonstrate how the company’s mobile electric vehicle charging station, ZiGGY, could be deployed in public spaces to economically and conveniently power up consumers’ parked cars.

[Related: Electric cars are better for the environment, no matter the power source.]

Electric vehicles are an integral component of the societal shift towards clean, renewable energy. Unfortunately, battery shortages stemming from supply chain issues alongside a need for evermore charging stations is hampering a wider adoption of green transportation. ZiGGY obviously isn’t a catch-all fix, but it’s still a novel tool that both its makers and DFW hope to highlight over the summer as part of the airport’s series of EV charging solution demos.

“We know that electric vehicles will be a big part of the future of transportation,” Paul Puopolo, DFW’s Executive VP of Innovation, said in a statement, adding their air hub is “leaning into emerging technology now so that we are prepared to meet the needs of the airport community well into the future.”

ZiGGY itself resembles a large vending machine on wheels, which makes a certain amount of sense given it dispenses electric fuel on demand. Using geofencing technology, app-based controls, and on-board cameras, ZiGGY can be deployed directly to the location of your parked EV, where a user can then connect the charging bot to their ride. To court additional revenue streams, each ZiGGY also features large video screens capable of displaying advertisements. Don’t worry about getting stuck behind it if someone is using a ZiGGY, either—its dimensions and mobility ensures each station can park itself behind an EV without the need for additional space.

Speaking with Ars Technica on Tuesday, EV Safe Charge’s founder and CEO Caradoc Ehrenhalt explained that the idea is to deploy ZiGGY fleets to commercial hubs around the world, such as additional airports, hotels, and shopping centers. “What we’re hearing from people… is the common thread of the infrastructure being very challenging or not possible to put in or not cost effective or takes too much time. And so there really is the need for a mobile charging solution,” said Ehrenhalt.

[Related: Why you barely see electric vehicles at car dealerships.]

Of course, such an autonomous vehicle could find itself prone to defacement and vandalism, but Ehrenhalt apparently opts to look on the sunnier side of things. “Ziggy is fairly heavy because of the battery,” they cautioned to Ars Technica. “It has cameras all around and sensors, including GPS, and so there potentially could be [vandalism], but I’m always hoping for the best of humanity.”

The post The Dallas airport is testing out EV charging bots that roll around like suitcases appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Honda’s electric go-karts pack a race car’s spirit into a tiny EV https://www.popsci.com/technology/honda-electric-go-kart/ Tue, 30 May 2023 22:04:28 +0000 https://www.popsci.com/?p=544614
Honda's eGX go-kart.
Honda's eGX go-kart. Kristin Shaw

These fun vehicles will hit 45 mph—and have more in common with real open-wheel race cars than you might think.

The post Honda’s electric go-karts pack a race car’s spirit into a tiny EV appeared first on Popular Science.

]]>
Honda's eGX go-kart.
Honda's eGX go-kart. Kristin Shaw

At first glance, race cars and electric go-karts have nothing in common except for a vaguely similar shape. Both are open-cockpit vehicles with wide wheels, and they both thrive on sharp turns—and that appears to be it. 

What many don’t realize is that go-karts are often the entry point for future Indy 500 drivers, and competitors also practice in the tiny vehicles to develop muscle memory. Several companies manufacture karts, and the most recent iteration of Honda’s version is the eGX go-kart concept, which is equipped with two 10-kilo (about 23 pounds) swappable battery packs good for about 45 minutes at a time. This battery technology allows the brand to test the dynamics of electric vehicles on a smaller scale before rolling it out to the much pricier race cars (and eventually apply this insight to passenger vehicles as well). 

Honda Accord, Civic, CR-V, and Odyssey owners might not realize it, but Honda’s passion starts with racing, and passenger cars reap the research benefits. Only two manufacturers make IndyCar engines, and Honda is one of them. In the last 30 years, Honda has claimed 18 IndyCar championships and 15 Indianapolis 500 wins. 

PopSci had a chance to pilot one of these eGX karts in the Indianapolis area over Indy 500 weekend. It was heart-pounding, arm-muscle-straining excitement, like a taste of the race itself (minus the yellow and red flags). We also got to speak with engineers to better understand Honda’s strategy for its entire product lineup, from power tools to cars. Here’s what we learned.  

Each battery pack weighs about 23 pounds.
Each battery pack weighs about 23 pounds. Kristin Shaw

Battery packs offer modularity and continuity

Kids interested in racing start with small go-karts and work their way up. If they have enough skill and a little luck, they’ll find themselves behind the wheel of a high-performance IndyCar or F1 machine. As they develop, drivers keep practicing with karts—albeit increasingly high-powered versions—that twist and squeal and mimic the experience of a road course race. 

“Karts are closer to the open-wheel experience than anything else,” says John Whiteman, commercial motorsports manager at Honda Performance Development. (In case you were wondering, an open-wheel car is one that has its wheels outside of the car versus underneath, like a passenger car.)

Honda Performance Development, or HPD for short, was founded in 1993 for the purpose of designing and developing racing engines along with chassis and performance parts for motorsports. HPD has a history of repurposing small engines to make gas-powered karts and quarter midgets (small racers that are about one-quarter scale of a full-size midget race car).

If you’ve ever been to an outdoor recreational karting track with friends and family, you’re familiar with the whine and buzz of the gas-powered version. Gas-powered kart engines are often shared with lawn mowers, made by other companies like Briggs and Stratton as well as HPD, and indoor tracks use electric karts so they’re not filling the air with toxic fumes. 

The eGX takes a typical electric go kart to the next level, employing two saddle packs on either side of the seat to house the lithium-ion batteries that power the kart. That way, the kart is balanced and maintains its grip with the road without adding rear bias or tip-over potential by loading the battery on one side. 

Whiteman says the swappable battery packs offer many upsides, including reduced maintenance costs and environmental benefits. Through this technology, HPD has learned more about energy storage, heat management, and vehicle weights and balances. These battery packs are already in use for small construction equipment like cordless rammers and compact excavators.

Along with reduced emissions and noise pollution, battery-pack-powered vehicles keep the equipment in commission continuously if you have a bank of these batteries that can be charging up while the others are in use. 

How race car research benefits Honda’s passenger cars

Ultimately, Honda and its HPD division are testing new ideas to find out how that translates to performance and customer satisfaction. Rebecca Johnson, HPD director of production and senior manager, says exploring electrification and sharing each division’s findings throughout the company creates opportunities to improve across the board. 

“We’re trying to train ourselves to be better at hybrids and battery packs for electrified racing,” Johnson says. “Let’s build something. Let’s make a car and let’s call it our laboratory, if you will, and let people ‘play’ and iterate on the design or technology. As we strive forward, we can put that together with what customers want.”

In 2024, the IndyCar series will run with hybrid units with 2.2-liter engines; currently, the power is all supplied by renewable race fuel. Honda is getting ready for this change by testing battery packs and a custom concept hybrid built with a tubular cage and sheet metal copied from a production CR-V crossover. It’s mind-boggling to ride in the Beast, as Honda calls it internally, as it looks like an SUV with a giant wing and sounds like a screaming hurricane inside. This is the future, and it’s pretty exciting. 

Johnson is steeped in racing culture, and she has her eyes trained forward as HPD works to maintain the visceral appeal of IndyCar and Formula One races while moving toward drastically reducing emissions.   

“We’re a racing company that happens to sell cars,” Johnson says. “Racing is in our DNA. If we can prove out tough things on a race track, we can surely make a good Civic. If you can do it at [IndyCar] level, then you should be very good at performance for a Civic owner. They want all the things that we want [for race cars] but on a different level.”

The post Honda’s electric go-karts pack a race car’s spirit into a tiny EV appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Ford EVs can soon be charged at Tesla stations https://www.popsci.com/technology/ford-tesla-supercharger/ Mon, 29 May 2023 11:00:00 +0000 https://www.popsci.com/?p=544152
Tesla supercharging station.
Tesla plans to open its charging stations to other electric vehicles. Tesla

Mustang Mach-E, F-150 Lightning and E-Transit customers can start using adapters to plug into superchargers.

The post Ford EVs can soon be charged at Tesla stations appeared first on Popular Science.

]]>
Tesla supercharging station.
Tesla plans to open its charging stations to other electric vehicles. Tesla

Ford and Tesla have been rivals for years in the electric vehicle market, but a new agreement may change their relationship status. On Thursday, Ford said in a press release that its EV customers would be able to get access to 12,000 Tesla superchargers across the US and Canada by spring of next year. This will broaden the availability of charging stations by adding to the network of ​​10,000 DC fast-chargers and over 80,000 level-two chargers that Ford has been building out for the last decade. 

Most EVs on the market use the Combined Charging System (CCS) ports for fast charging. Teslas have a unique charging port called the North American Charging Standard (NACS), but its vehicle owners can use special adapters to charge at non-Tesla power stations. 

Pre-2021, it meant that Teslas could charge at public power stations, but no other EVs could charge at a Tesla station. However, starting in November 2021, Tesla started making some (but not all) of its superchargers open to non-Tesla EVs through a “Magic Dock” adapter. Drivers who wanted to use this still had to download the Tesla app on their phones in order to make it work. The Ford partnership will change that process, making things easier for people driving vehicles like the Mach-E or F-150 Lightning.  

“Mustang Mach-E, F-150 Lightning and E-Transit customers will be able to access the Superchargers via an adapter and software integration along with activation and payment via FordPass or Ford Pro Intelligence,” the company said. “In 2025, Ford will offer next-generation electric vehicles with the North American Charging Standard (NACS) connector built-in, eliminating the need for an adapter to access Tesla Superchargers.”

[Related: Electric cars are better for the environment, no matter the power source]

As EVs become more commonplace, charging availability and range anxiety become understandable concerns for many owners. The only way to relieve that is to build a charging infrastructure that parallels the distribution of gas stations across the country. The Biden Administration has made building public chargers a priority, and last fall, the Department of Transportation said that it had signed off on the EV charging plans for all US states, as well as DC and Puerto Rico. States like Michigan and Indiana have even come up with ambitious plans to make wireless charging possible through special roadway systems

When it comes to smoothing over the potholes in the way of EV adoption in the US, more accessible chargers are never a bad thing. Tesla, having led the EV game for so long, seems like it’s finally ready to share its resources for the greater good. “Essentially, the idea is that we don’t want the Tesla Supercharger network to be like a walled garden. We want it to be something that is supportive of electrification and sustainable transport in general,” Tesla CEO Elon Musk said Thursday in Twitter Spaces, as reported by TechCrunch.  

“It seems totally ridiculous that we have an infrastructure problem, and we can’t even agree on what plug to use,” Ford CEO Jim Farley said at a Morgan Stanley conference, CNBC reported. “I think the first step is to work together in a way we haven’t, probably with the new EV brands and the traditional auto companies.”

The post Ford EVs can soon be charged at Tesla stations appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Electric cars are better for the environment, no matter the power source https://www.popsci.com/technology/are-electric-cars-better-for-the-environment/ Fri, 26 May 2023 14:00:00 +0000 https://www.popsci.com/?p=543822
Ioniq 6 EV
An Ioniq 6 electric vehicle. Hyundai

Experts say that across the board, EVs are a win compared to similar gas-powered vehicles.

The post Electric cars are better for the environment, no matter the power source appeared first on Popular Science.

]]>
Ioniq 6 EV
An Ioniq 6 electric vehicle. Hyundai

These days, it seems like every carmaker—from those focused on luxury options to those with an eye more toward the economical—is getting into electric vehicles. And with new US policies around purchasing incentives and infrastructure improvements, consumers might be more on board as well. But many people are still concerned about whether electric vehicles are truly better for the environment overall, considering certain questions surrounding their production process

Despite concerns about the pollution generated from mining materials for batteries and the manufacturing process for the EVs themselves, the environmental and energy experts PopSci spoke to say that across the board, electric vehicles are still better for the environment than similar gasoline or diesel-powered models. 

When comparing a typical commercial electric vehicle to a gasoline vehicle of the same size, there are benefits across many different dimensions

“We do know, for instance, if we’re looking at carbon dioxide emissions, greenhouse gas emissions, that electric vehicles operating on the typical electric grid can end up with fewer greenhouse gas emissions over the life of their vehicle,” says Dave Gohlke, an energy and environmental analyst at Argonne National Lab. “The fuel consumption (using electricity to generate the fuel as opposed to burning petroleum) ends up releasing fewer emissions per mile and over the course of the vehicle’s expected lifetime.”

[Related: An electrified car isn’t the same thing as an electric one. Here’s the difference.]

How the electricity gets made

With greenhouse gas emissions, it’s also worth considering how the electricity for charging the EV is generated. Electricity made by a coal- or oil-burning plant will have higher emissions compared to a natural gas plant, while nuclear and renewable energy will have the fewest emissions. But even an electric vehicle that got its juice from a coal plant tends to have fewer emissions compared to a gasoline vehicle of the same size, Gohlke says. “And that comes down to the fact that a coal power plant is huge. It’s able to generate electricity at a better scale, [be] more efficient, as opposed to your relatively small engine that fits in the hood of your car.” Power plants could additionally have devices in place to scrub their smokestacks or capture some of the emissions that arise.  

EVs also produce no tailpipe emissions, which means reductions in particulate matter or in smog precursors that contribute to local air pollution.

“The latest best evidence right now indicates that in almost everywhere in the US, electric vehicles are better for the environment than conventional vehicles,” says Kenneth Gillingham, professor of environmental and energy economics at Yale School of the Environment. “How much better for the environment depends on where you charge and what time you charge.”

Electric motors tend to be more efficient compared to the spark ignition engine used in gasoline cars or the compression ignition engine used in diesel cars, where there’s usually a lot of waste heat and wasted energy.

Let’s talk about EV production

“It’s definitely the case that any technology has downsides. With technology you have to use resources, [the] raw materials we have available, and convert them to a new form,” says Jessika Trancik, a professor of data, systems, and society at the Massachusetts Institute of Technology. “And that usually comes with some environmental impacts. No technology is perfect in that sense, but when it comes to evaluating a technology, we have to think of what services it’s providing, and what technology providing the same service it’s replacing.”

Creating an EV produces pollution during the manufacturing process. “Greenhouse gas emissions associated with producing an electric vehicle are almost twice that of an internal combustion vehicle…that is due primarily to the battery. You’re actually increasing greenhouse gas emissions to produce the vehicle, but there’s a net overall lifecycle benefit or reduction because of the significant savings in the use of the vehicle,” says Gregory Keoleian, the director of the Center for Sustainable Systems at the University of Michigan. “We found in terms of the overall lifecycle, on average, across the United States, taking into account temperature effects, grid effects, there was 57 percent reduction in greenhouse gas emissions for a new electric vehicle compared to a new combustion engine vehicle.” 

In terms of reducing greenhouse gas emissions associated with operating the vehicles, fully battery-powered electric vehicles were the best, followed by plug-in hybrids, and then hybrids, with internal combustion engine vehicles faring the worst, Keoleian notes. Range anxiety might still be top of mind for some drivers, but he adds that households with more than one vehicle can consider diversifying their fleet to add an EV for everyday use, when appropriate, and save the gas vehicle (or the gas feature on their hybrids) for longer trips.

The breakeven point at which the cost of producing and operating an electric vehicle starts to gain an edge over a gasoline vehicle of similar make and model occurs at around two years in, or around 20,000 to 50,000 miles. But when that happens can vary slightly on a case-by-case basis. “If you have almost no carbon electricity, and you’re charging off solar panels on your own roof almost exclusively, that breakeven point will be sooner,” says Gohlke. “If you’re somewhere with a very carbon intensive grid, that breakeven point will be a little bit later. It depends on the style of your vehicle as well because of the materials that go into it.” 

[Related: Why solid-state batteries are the next frontier for EV makers]

For context, Gohlke notes that the average EV age right now is around 12 years old based on registration data. And these vehicles are expected to drive approximately 200,000 miles over their lifetime. 

“Obviously if you drive off your dealer’s lot and you drive right into a light pole and that car never takes more than a single mile, that single vehicle will have had more embedded emissions than if you had wrecked a gasoline car on your first drive,” says Gohlke. “But if you look at the entire fleet of vehicles, all 200-plus-million vehicles that are out there and how long we expect them to survive, over the life of the vehicle, each of those electric vehicles is expected to consume less energy and emit lower emissions than the corresponding gas vehicle would’ve been.”

To put things in perspective, Gillingham says that extracting and transporting fossil fuels like oil is energy intensive as well. When you weigh those factors, electric vehicle production doesn’t appear that much worse than the production of gasoline vehicles, he says. “Increasingly, they’re actually looking better depending on the battery chemistry and where the batteries are made.” 

And while it’s true that there are issues with mines, the petrol economy has damaged a lot of the environment and continues to do so. That’s why improving individual vehicle efficiency needs to be paired with reducing overall consumption.

EV batteries are getting better

Mined materials like rare metals can have harmful social and environmental effects, but that’s an economy-wide problem. There are many metals that are being used in batteries, but the use of metals is nothing new, says Trancik. Metals can be found in a range of household products and appliances that many people use in their daily lives. 

Plus, there have been dramatic improvements in battery technology and the engineering of the vehicle itself in the past decade. The batteries have become cheaper, safer, more durable, faster charging, and longer lasting. 

“There’s still a lot of room to improve further. There’s room for improved chemistry of the batteries and improved packaging and improved coolant systems and software that manages the batteries,” says Gillingham.

The two primary batteries used in electric vehicles today are NMC (nickel-manganese-cobalt) and LFP (lithium-ferrous-phosphate). NMC batteries tend to use more precious metals like cobalt from the Congo, but they are also more energy dense. LFP uses more abundant metals. And although the technology is improving fast, it’s still in an early stage, sensitive to cold weather, and not quite as energy dense. LFP tends to be good for utility scale cases, like for storing electricity on the grid. 

[Related: Could swappable EV batteries replace charging stations?]

Electric vehicles also offer an advantage when it comes to fewer trips to the mechanic; conventional vehicles have more moving parts that can break down. “You’re more likely to be doing maintenance on a conventional vehicle,” says Gillingham. He says that there have been Teslas in his studies that are around eight years old, with 300,000 miles on them, which means that even though the battery does tend to degrade a little every year, that degradation is fairly modest.

Eventually, if the electric vehicle markets grow substantially, and there’s many of these vehicles in circulation, reusing the metals in the cars can increase their benefits. “This is something that you can’t really do with the fossil fuels that have already been combusted in an internal combustion engine,” says Trancik. “There is a potential to set up that circularity in the supply chain of those metals that’s not readily done with fossil fuels.”

Since batteries are fairly environmentally costly, the best case is for consumers who are interested in EVs to get a car with a small battery, or a plug-in hybrid electric car that runs on battery power most of the time. “A Toyota Corolla-sized car, maybe with some hybridization, could in many cases, be better for the environment than a gigantic Hummer-sized electric vehicle,” says Gillingham. (The charts in this New York Times article help visualize that distinction.) 

Where policies could help

Electric vehicles are already better for the environment and becoming increasingly better for the environment. 

The biggest factor that could make EVs even better is if the electrical grid goes fully carbon free. Policies that provide subsidies for carbon-free power, or carbon taxes to incentivize cleaner power, could help in this respect. 

The other aspect that would make a difference is to encourage more efficient electric vehicles and to discourage the production of enormous electric vehicles. “Some people may need a pickup truck for work. But if you don’t need a large car for an actual activity, it’s certainly better to have a more reasonably sized car,” Gillingham says.  

Plus, electrifying public transportation, buses, and vehicles like the fleet of trucks run by the USPS can have a big impact because of how often they’re used. Making these vehicles electric can reduce air pollution from idling, and routes can be designed so that they don’t need as large of a battery.  

“The rollout of EVs in general has been slower than demand would support…There’s potentially a larger market for EVs,” Gillingham says. The holdup is due mainly to supply chain problems

Switching over completely to EVs is, of course, not the end-all solution for the world’s environmental woes. Currently, car culture is very deeply embedded in American culture and consumerism in general, Gillingham says, and that’s not easy to change. When it comes to climate policy around transportation, it needs to address all the different modes of transportation that people use and the industrial energy services to bring down greenhouse gas emissions across the board. 

The greenest form of transportation is walking, followed by biking, followed by using public transit. Electrifying the vehicles that can be electrified is great, but policies should also consider the ways cities are designed—are they walkable, livable, and have a reliable public transit system connecting communities to where they need to go? 

“There’s definitely a number of different modes of transport that need to be addressed and green modes of transport that need to be supported,” says Trancik. “We really need to be thinking holistically about all these ways to reduce greenhouse gas emissions.”

The post Electric cars are better for the environment, no matter the power source appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Get ready for the world’s first permanent EV-charging road https://www.popsci.com/technology/sweden-electric-highway/ Fri, 12 May 2023 15:00:00 +0000 https://www.popsci.com/?p=540828
Blurry shot of cars commuting on highway at dusk
Sweden will use one of three different charging methods on a stretch of one of its highways. Deposit Photos

A roughly 13-mile span of Swedish highway could charge mass transit vehicles, and maybe commuters' EVs, as early as 2025.

The post Get ready for the world’s first permanent EV-charging road appeared first on Popular Science.

]]>
Blurry shot of cars commuting on highway at dusk
Sweden will use one of three different charging methods on a stretch of one of its highways. Deposit Photos

A road capable of charging electric vehicles en route to their destinations could power up as soon as 2025 in one of the world’s most eco-friendly nations. As the Amsterdam-based tech site The Next Web explains, Sweden is well on track to electrifying a roughly 13-mile portion of its E20 highway spanning between Hallsberg to Örebro, both of which are located between Sweden’s two largest cities, Stockholm and Gothenburg.

The electric road system (ERS) project is overseen by the nation’s transport administration, Trafikverket, who are still determining which of three specific technologies could be best suited for the task: overhead conductive, ground-based conductive, and ground-based inductive charging. The first format utilizes an overhead pantograph design similar to those seen atop traditional trolleys and streetcars, but would be limited to large vehicles capable of reaching the tall power lines, i.e. public commuter vehicles.

[Related: Car owners: here’s when experts say you should switch to an EV.]

The other two options, however, could hypothetically also support smaller vehicles and private EVs. In a ground-based conductive format, power would transfer from specialized tracks installed either on top or below the pavement via a mechanical arm. Inductive charging would require conductive coils installed in both the roads and vehicles.

As futuristic as these ideas may sound, Sweden has already successfully tested all three ERS methods in various areas around the nation, including the towns of Gotland, Lund, and Sandviken. While much of that work has pertained to mass transit options, designers also tinkered with systems capable of supporting smaller and private vehicles as far back as 2018.

There are immense benefits to expanding ERS capabilities, beyond just the immediate convenience. According to one recent study from Chalmers University of Technology in Gothenburg, increased reliance on ERS installations alongside at-home EV charging could lower electrical grid demands during peak usage times, as well as potentially reduce vehicle battery size by as much as 70 percent. Those smaller batteries would mean less rare earth materials are harvested, leading to potentially cheaper, more accessible EV options for consumers.

[Related: Why you barely see electric vehicles at car dealerships.]

“After all, many people charge their cars after work and during the night, which puts a lot of strain on the power grid,” author Sten Karlsson, an energy efficiency researcher and professor at Chalmers, said in a release in March. “By instead charging more evenly throughout the day, peak load would be significantly reduced.”

Sweden isn’t alone in its aim to electrify portions of its roadways. As the electric transportation industry site Electrive notes, similar projects are also underway in the UK, Germain, Italy, and Israel. Here in the US, the Norwegian company ENRX recently announced plans to install a one-mile ERS prototype section within a stretch of four-lane highway near Orlando, Florida.

The post Get ready for the world’s first permanent EV-charging road appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Why you barely see electric vehicles at car dealerships https://www.popsci.com/technology/car-dealership-electric-vehicle/ Tue, 09 May 2023 19:00:00 +0000 https://www.popsci.com/?p=540040
There are already 1.9 million reservations or pre-orders for recently released EVs.
There are already 1.9 million reservations or pre-orders for recently released EVs. DepositPhotos

Wanting an EV is one thing—buying one is another.

The post Why you barely see electric vehicles at car dealerships appeared first on Popular Science.

]]>
There are already 1.9 million reservations or pre-orders for recently released EVs.
There are already 1.9 million reservations or pre-orders for recently released EVs. DepositPhotos

In the news, it seems like electric vehicles are everywhere—from new tech developments to changing policies to increasingly interesting designs. And while the road to electric vehicles may be bumpy, reports show that it’s absolutely crucial to electrify our transportation sector in order to reach critical climate change goals. But unfortunately, the feeling of EV omnipresence doesn’t currently extend to the dealership.

According to a new study released this week by the Sierra Club, 66 percent of car dealerships nationwide did not have a single electric vehicle for sale. And out of those dealerships, only 44 percent reported that they would offer an EV for sale if they could get their hands on one. While this is a step up from previous reporting done by the Sierra Club in 2019, it’s still low considering the massive EV goals set in place by businesses and certain state legislation.

[Related: EV companies call out their own weaknesses in new clean energy report.]

“To help avoid the worst impacts of climate disruption and protect our communities, it’s important that we accelerate the transition to all-electric vehicles,” Sierra Club Clean Transportation for All Director Katherine Garcia said in a release. “Enough empty promises: The auto industry must step on the accelerator and get electric vehicles on dealership lots now.”

One of the major problems getting EVs to the dealership lots is supply chain problems involving semiconductors and batteries, but some major manufacturers are also part of the problem themselves. Major manufacturers often don’t have many EV options in the US—for example, Honda’s first EV to sell in the US won’t be available until 2024, with Toyota only starting to sell the BZ4X stateside last year

For dealers, selling EVs just isn’t the same money making machine as selling combustion cars. A decent chunk of a dealership’s income is from parts and service, something that just isn’t as necessary for electric vehicles, according to the National Automobile Dealers Association.

“All else equal, an electric car has fewer mechanical parts than a gasoline or diesel car, which directly means that the revenue a car dealer makes from an electric car is much lower than what the dealer will make from a gas or diesel counterpart,” Vivek Astvansh, an assistant professor of marketing at Indiana University, told Vox.

Plus, investing in infrastructure can represent a huge cost, from purchasing chargers and infrastructure to retraining staff on the ins and outs of EVs. Some manufacturers, such as Chevrolet, are enacting EV standards for their dealerships, according to reporting by Vox

[Related: Here’s when experts say you should switch to an EV.]

It’s not all bad news, however—the ability to buy directly from EV makers such as Rivian and Lucid can put the pressure on dealerships to get the electrification started. States where policy allows for direct sales account for 615,724 EVs sold in 2022, representing 65 percent of all EVs sold nationwide, according to the report. 

And if you’re looking to find a dealership that has an EV in stock, your best bet is to try locations in the Southeast (which have a 41 percent rate of dealers with EVs) or look around for Mercedes-Benz dealerships which above 75 percent of offer EVs. 

But for dealerships, the time to act is now. There are already 1.9 million reservations or pre-orders for recently released EVs, and the percentage of EVs in new vehicle sales has tripled since 2020.

The post Why you barely see electric vehicles at car dealerships appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
You can unlock this new EV with your face https://www.popsci.com/technology/genesis-gv60-facial-recognition/ Mon, 08 May 2023 22:00:00 +0000 https://www.popsci.com/?p=539829
If you've set up facial recognition on the Genesis GV60, you won't need to have your key on you.
If you've set up facial recognition on the Genesis GV60, you won't need to have your key on you. Kristin Shaw

We tested the Genesis GV60, which allows you to open and even start the car using facial recognition and a fingerprint.

The post You can unlock this new EV with your face appeared first on Popular Science.

]]>
If you've set up facial recognition on the Genesis GV60, you won't need to have your key on you.
If you've set up facial recognition on the Genesis GV60, you won't need to have your key on you. Kristin Shaw

If you have Face ID set up on your iPhone, you can unlock your device by showing it your visage instead of using a pin code or a thumb print. It’s a familiar aspect of smartphone tech for many of us, but what about using it to get in your vehicle?

The Genesis GV60 is the first car to feature this technology to unlock and enter the car, pairing it with your fingerprint to start it up.

How does it work? Here’s what we discovered.

The Genesis GV60 is a tech-laden EV

Officially announced in the fall of 2022, the GV60 is Genesis’ first dedicated all-electric vehicle. Genesis, for the uninitiated, is the luxury arm of Korea-based automaker Hyundai. 

Built on the new Electric-Global Modular Platform, the GV60 is equipped with two electric motors, and the result is an impressive ride. At the entry level, the GV60 Advanced gets 314 horsepower, and the higher-level Performance trim cranks out 429 horsepower. As a bonus, the Performance also includes a Boost button that can kick it up to 483 horsepower for 10 seconds; with that in play, the GV60 boasts a 0-to-60 mph time of less than four seconds.

The profile of this EV is handsome, especially in the look-at-me shade of São Paulo Lime. Inside, the EV is just as fetching as the exterior, with cool touches like the rotating gear shifter. As soon as the car starts up, a crystal orb rotates to reveal a notched shifter that looks and feels futuristic. Some might say it’s gimmicky, but it does have a wonderful ergonomic feel on the pads of the fingers.

The rotating gear selector.
The rotating gear selector. Kristin Shaw

Embedded in the glossy black trim of the B-pillar, which is the part of the frame between the front and rear doors, the facial recognition camera stands ready to let you into the car without a key. But first, you’ll need to set it up to recognize you and up to one other user, so the car can be accessed by a partner, family member, or friend. Genesis uses deep learning to power this feature, and if you’d like to learn more about artificial intelligence, read our explainer on AI.

The facial recognition setup process

You’ll need both sets of the vehicle’s smart keys (Genesis’ key fobs) in hand to set up Face Connect, Genesis’ moniker for its facial recognition setup. Place the keys in the car, start it up, and open the “setup” menu and choose “user profile.” From there, establish a password and choose “set facial recognition.” The car will prompt you to leave the car running and step out of it, leaving the door open. Gaze into the white circle until the animation stops and turns green, and the GV60 will play an audio prompt: “facial recognition set.” The system is intuitive, and I found that I could set it up the first time on my own just through the prompts. If you don’t get it right, the GV60 will let you know and the camera light will turn from white to red.

After the image, the GV60 needs your fingerprint. Basically, you’ll go through the same setup process, instead choosing “fingerprint identification” and the car will issue instructions. It will ask for several placements of your index finger inside the vehicle (the fingerprint area is a small circle between the volume and tuning roller buttons) to create a full profile.

Genesis GV60 facial recognition camera
The camera on the exterior of the Genesis GV60. Genesis

In tandem, these two biometrics (facial recognition and fingerprint) work together to first unlock and then start the car. Upon approach, touch the door handle and place your face near the camera and it will unlock; you can even leave the key in the car and lock it with this setup. I found it to be very easy to set up, and it registered my face on the first try. The only thing I forgot the first couple of times was that I first had to touch the door handle and then scan my face. I could see this being a terrific way to park and take a jog around the park or hit the beach without having to worry about how to secure a physical key. 

Interestingly, to delete a profile the car requires just one smart key instead of two.

Not everyone is a fan of this type of technology in general because of privacy concerns related to biometrics; Genesis says no biometric data is uploaded to the cloud, but is stored securely and heavily encrypted in the vehicle itself. If it is your cup of tea and you like the option to leave the physical keys behind, this is a unique way of getting into your car. 

The post You can unlock this new EV with your face appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Tesla lawyers argued Elon Musk Autopilot statements might be manipulated with deepfake tech https://www.popsci.com/technology/tesla-elon-deepfake/ Thu, 27 Apr 2023 16:30:00 +0000 https://www.popsci.com/?p=537287
Elon Musk waving while wearing a suit
The judge was less-than-persuaded by the argument. Justin Sullivan/Getty Images

The judge found the argument 'deeply troubling.'

The post Tesla lawyers argued Elon Musk Autopilot statements might be manipulated with deepfake tech appeared first on Popular Science.

]]>
Elon Musk waving while wearing a suit
The judge was less-than-persuaded by the argument. Justin Sullivan/Getty Images

Earlier this week, a California judge tentatively ordered Elon Musk to testify under oath regarding the Tesla CEO’s past claims related to the EV company’s Autopilot software. The request, as reported by multiple outlets, pertains to an ongoing lawsuit alleging the AI drive-assist program is partially responsible for the 2018 death of Apple engineer Walter Huang. The request would also compel Musk to address previous, frequently lofty descriptions of the system. In 2016, for example, Musk alleged “a Model S and Model X, at this point, can drive autonomously with greater safety than a person.”

But before Santa Clara County Superior Court Judge Evette D. Pennypacker issued their decision, Tesla’s legal defense offered a creative argument as to why the CEO shouldn’t have to testify: any documentation of Musk’s prior Autopilot claims could simply be deepfakes

Reports of the defense strategy came earlier this week from both Reuters and Bloomberg, and also include Judge Pennypacker’s critical response to Tesla’s concerns. “Their position is that because Mr. Musk is famous and might be more of a target for deep fakes, his public statements are immune,” wrote the judge. “In other words, Mr. Musk, and others in his position, can simply say whatever they like in the public domain, then hide behind the potential for their recorded statements being a deep fake to avoid taking ownership of what they did actually say and do.”

[Related: Why an AI image of Pope Francis in a fly jacket stirred up the internet.]

While there are some entertaining examples out there, AI-generated videos and images—often referred to as deepfakes—are an increasing cause of concern among misinformation experts. Despite the legitimate concerns, contending that archival recorded statements are now rendered wholesale untrustworthy now would be “deeply troubling,” Judge Pennybacker said in the reports. Although Musk’s deposition order is “tentative,” as Reuters notes, “California judges often issue tentative rulings, which are almost always finalized with few major changes after such a hearing.” 

Tesla faces numerous investigations involving the company’s controversial Autopilot system, including one from the Department of Justice first revealed late last year. Last week, a California state court jury ruled the company was not at fault in a separate wrongful death lawsuit involving an EV’s Autopilot system. Huang’s wrongful death lawsuit is scheduled to go into trial on July 31.

The post Tesla lawyers argued Elon Musk Autopilot statements might be manipulated with deepfake tech appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Tesla’s carbon footprint is much larger than it previously disclosed https://www.popsci.com/technology/tesla-impact-report-2022/ Wed, 26 Apr 2023 18:30:00 +0000 https://www.popsci.com/?p=536963
New Model Y electric vehicles are parked in the early morning in a parking lot outside the plant of the US electric car manufacturer Tesla.
New Model Y electric vehicles are parked in the early morning in a parking lot outside the plant of the US electric car manufacturer Tesla. Photo by Patrick Pleul/picture alliance via Getty Images

The popular EV maker comes clean on the full scope of its CO2 emissions.

The post Tesla’s carbon footprint is much larger than it previously disclosed appeared first on Popular Science.

]]>
New Model Y electric vehicles are parked in the early morning in a parking lot outside the plant of the US electric car manufacturer Tesla.
New Model Y electric vehicles are parked in the early morning in a parking lot outside the plant of the US electric car manufacturer Tesla. Photo by Patrick Pleul/picture alliance via Getty Images

Although Tesla’s latest Impact Report promises that “a sustainable future is within reach,” the company’s 2022 figures show just how crucial accurate measurements are in achieving the lofty goal. Released earlier this week, an expanded dataset dramatically upped the electric vehicle maker’s total carbon footprint when compared with the prior year’s available information. The larger picture? An estimated 30.7 million tons of CO2 in supply chain emissions atop previously reported categories of pollution. That’s roughly equivalent to Serbia’s total emissions in 2021. 

[Related: Tesla employees allegedly viewed drivers’ car camera footage.]

Tesla only publicly offered how much greenhouse gas the company generated in 2021 via direct operations and EV owners charging their cars—around 2.5 million metric tons of CO2. That might seem small compared to its competitors (Ford recorded 337 million metric tons of CO2 in 2022, for example), but these segments of overall emissions are just a fraction of a company’s supply chain pollution stemming from production, transportation, and indirect operations. And while those numbers weren’t disclosed for 2021, they were for last year within Tesla’s new report.

As The Verge notes, the vast difference in numbers comes down to what companies generally choose to include in these kinds of industry reports. Carbon footprints are often broken down into three “scopes,” with Scope 1 encompassing direct company emissions (i.e. factory emissions, brick-and-mortar offices, and its own vehicles for travel and commuting). Meanwhile, Scope 2 includes emissions stemming from heating, A/C, and electricity usage in company buildings like offices. Scope 3 focuses on all the extra, indirect emissions from supply chain manufacturing alongside products’ lifecycle emissions.

Most often, businesses choose to detail only Scopes 1 and 2, as they are usually smaller than Scope 3’s numbers, even when combined. This often makes a company’s carbon footprint appear much smaller than it actually is when seen as a fuller picture; a strategy often referred to as “greenwashing.” In Tesla’s 2022 Impact Report, for instance, the first two “scopes” totaled just 610,000 metric tons of CO2—a much more palatable figure for investors and consumers than the true total of over 31 million tons.

[Related: Tesla is under federal investigation over autopilot claims.]

Still, Tesla actually making its Scope 3 data available to the public offers some much needed additional transparency within the industry. Even then, however, the company’s  combined Scope 1 and 2 numbers rose a little under four percent, year-over-year. This, as The Verge also added, came even as Tesla still worked to make its EVs less carbon-intensive. Earlier this month, Tesla revealed “Part 3” of its ongoing “Master Plan” to provide sustainable energy for the entire world, estimating it will take $10 trillion in investments to fully realize.

The post Tesla’s carbon footprint is much larger than it previously disclosed appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Jeep is steering its famous off-roaders towards electrification https://www.popsci.com/technology/jeep-electrification-plans/ Mon, 24 Apr 2023 22:00:00 +0000 https://www.popsci.com/?p=536448
the jeep magneto concept
Jeep's Magneto 3.0 concept. Jeep

Taking an electrified Jeep off-road makes for a quiet experience. Here's what the automaker is working on.

The post Jeep is steering its famous off-roaders towards electrification appeared first on Popular Science.

]]>
the jeep magneto concept
Jeep's Magneto 3.0 concept. Jeep

Jeep established its roots back in the 1940s, and the brand quickly established itself as a 4×4 expert. Rugged and utilitarian, Jeep has been an icon of off-roading ever since. For its next act, the automaker is getting electrified. Jim Morrison, senior vice president and head of the Jeep brand in North America, says it has established its line in the sand. 

“We’ve said we will be the greenest SUV brand and by 2025 all of our vehicles will be electrified,” Morrison says. “We expect half our sales to be electrified by 2030.”

Jeep’s plan includes four all-electric SUVs in North America and in Europe by 2025. The automaker debuted sneak peeks of two of those vehicles—the Jeep Recon EV and Wagoneer EV (code name Wagoneer S)—via its YouTube channel back in September of last year.

Remember, electrified in an automotive context is different from fully electric: Electrified refers to using motors to enhance and support gas-powered models for better efficiency and fewer emissions, while fully electric is a pure EV, with no internal combustion engine whatsoever. Jeep will offer both types, at least for now. Stellantis, Jeep’s parent company, has ranked at the bottom of the EPA’s 2022 rankings [PDF] for fuel efficiency and carbon emissions between 2016 and 2021; Stellantis includes brands like Chrysler, Alfa Romeo, and Dodge. Each of these brands is finally getting a hybrid version—Dodge unveiled the hybrid Hornet in March and Alfa Romeo is about to launch its first electrified model, the Tonale—so improvement is on the table. 

The electrified plans are well on its way: the Wrangler 4xe, Jeep’s first plug-in hybrid vehicle, made its debut for model year 2021 and the Grand Cherokee was offered as a PHEV for 2022. Since then, both have registered impressive sales, with the Wrangler 4xe taking the crown as America’s best-selling PHEV for 2022. How will the electrification of Jeep affect its off-roading credibility? 

Here’s how it’s working in the real world. 

The 4xe can make it for 21 all-electric miles.
The 4xe can make it for 21 all-electric miles. Jeep

The Jeep Magneto concept

At its 57th Easter Jeep Safari in Moab, Utah this March, the brand showed off its newest batch of concepts intended to inspire Jeep owners to enhance and accessorize, and to entice non-Jeep owners to dream. (The Easter Jeep Safari is typically a nine-day event with day-long 4×4 trail rides throughout—basically, it’s like summer camp for off-roaders.) One of those was the Magneto 3.0 concept, a fully-electric variant of the popular Wrangler SUV. The Magneto name sounds like a superhero badge, and it’s definitely a way for the automaker to see how far it can go. 

“Magneto has been our test bed and pushed the extremes for 4×4 capability and electrification,” Morrison tells PopSci. “Over these years, we have been learning more and more about how electrification is accepted by our customers. Magneto 3.0 is exponentially better than 1.0; we learned that instant torque is cool with 1.0, then we learned you can modify it with 2.0, adding 40-inch tires and Dana 60 axles. This year, we took it up to 900 hp with Magneto 3.0, and it’s an absolute beast off road.” 

The automaker says the third time’s the charm with this version, as it expands upon the improbable combination of a six-speed manual transmission with a battery-electric powertrain. I got behind the wheel of Magneto 2.0 in Moab last year with Morrison in the passenger seat, and was impressed by the concept’s rock crawling ability; it held up to the capability everyone expects of a Jeep. 

The sounds of (off-roading) silence

Driving a Magneto and a 4xe, what I noticed most of all was the quiet. In the Magneto, of course, the vehicle is nearly silent, but it’s just a concept at this point and not available to the masses. Details on the upcoming Jeep Recon EV are slim so far, and we’ll be waiting to see what features and range it will include.

Unlike an all-electric Jeep, the Wrangler 4xe or Grand Cherokee 4xe are available now. The vehicles default to the hybrid system, and operating it in E-Save mode on the asphalt conserves the electric capacity for the trails. In the Wrangler 4xe or Grand Cherokee 4xe (those two models boast 21 all-electric miles for the Wrangler 4xe and 26 all-electric miles in the Grand Cherokee), drivers can run nearly the entire Rubicon Trail in California if they want to. 

Off-roading competitor and owner of Barlow Adventures in Arizona, Nena Barlow, has led Jeep tours at the Easter Jeep Safari and tested all three versions of the Magneto on the trails. She’s also a six-time Rebelle Rally competitor, and won the last two years in a Wrangler 4xe. Barlow also cited silence as a key benefit to driving an electrified off-roader, not just for the reduction in noise pollution but for the driving advantages, being more in tune with her vehicle. 

“The power with electric motors is just amazing in terms of the torque, the control, and the quiet,” says Barlow. “Even in the 4xe, being able to run obstacles in electric mode has spoiled me. I kind of get irritated by engine noise now; I want to hear what my tires are doing.”

When tackling challenging terrain, it’s a huge advantage to be able to hear your tires. Drivers can hear if they’re slipping off a rock and evaluate how well the rubber is connecting to the road. There’s a crunching sound on loose terrain, and a different noise when you’re at that threshold of losing adhesion, Barlow says. 

Morrison’s daily driver is a 4xe, and he says the wildlife near his home pay him no mind. “You’re just driving around and suddenly you’re face to face with a deer,” he says. “It’s fun to go off road and connect with nature.” 

Does an electrified Jeep provide enough power?

Some have asked Barlow why she would choose the Wrangler 4xe and not the beastly 6.4-liter V8-carrying Wrangler Rubicon 392 for the Rebelle Rally. The 4xe has the same amount of torque (470 pound-feet) but less horsepower (270 hp versus 470 hp) than the 392, but the 4xe gets twice the range out of one tank of gas. 

Those worried about scraping up the battery pack needn’t fret, because the bellies are well protected. In fact, Barlow has been renting out Wrangler 4xe models to tourists for the past couple of years, and she says if renters can’t find a weak spot, no one can. 

What you’ll notice while off-roading in an electrified Jeep is the pure power to take on big hills with no hesitation. In electric mode, the vehicle pushes forward smoothly and without lag, holding on an ascent without much effort. The bigger challenge may be the charging infrastructure, which Jeep is addressing with solar-powered charging stations at its Badge of Honor trailheads.

“I believe the 4xe is the future,” Barlow says. “It has all the power and great range, and that’s the way we need to be going.” 

Correction on April 25, 2023: This article has been updated to clarify Jeep’s plans for all-electric vehicles, including the Recon EV and Wagoneer EV.

The post Jeep is steering its famous off-roaders towards electrification appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Kia’s powerful EV6 GT has supercar-like chops https://www.popsci.com/technology/kia-ev6-gt/ Mon, 17 Apr 2023 22:00:00 +0000 https://www.popsci.com/?p=534791
The EV6 GT.
The EV6 GT. Kia

The brand has produced hit after hit, and earned great marks in a recent EPA report, too.

The post Kia’s powerful EV6 GT has supercar-like chops appeared first on Popular Science.

]]>
The EV6 GT.
The EV6 GT. Kia

Boasting 576 horsepower and 545 pound-feet of torque, the new Kia EV6 GT is thrilling. Press your finger on the GT button on the steering wheel and, like electrified magic, the crossover seems to catapult into hyperspace. The company boldly proclaims that the EV6 GT can go toe to toe with the Ferrari Roma or the Lamborghini Huracán Evo Spyder RWD, accelerating from 0-60 miles per hour in 3.4 seconds. Take a moment and let that comparison sink in.

In fact, this vehicle was recently recognized with the 2023 World Performance Car title at this year’s World Car Awards. After having the EV6 GT in my possession for a test drive, I can report that it has certainly earned its accolades. 

Planning to build a crossover with supercar-like chops is no accident or stroke of luck—this is how Kia’s EV strategy has developed behind the scenes. 

Planning for a winner

Stunners like the EV6 GT have been on the books for years now, a glimmer in Kia’s eye long before it was a reality. 

The EV-dedicated chassis on which the EV6 was engineered was announced back in 2017, which means the design was in the works well before that. The Korean company’s long-term strategy is paying off: Late last year, the Environmental Protection Agency (EPA) reported that Kia achieved the largest reduction in CO2 emissions in the U.S. market for its 2016 to 2021 vehicles. After the Biden Administration’s newest edict to drastically reduce emissions from vehicles was revealed last week, Kia and its parent company Hyundai Motor Group appear to be way ahead of the curve.

Twenty-five years ago, Kia was better known for making inexpensive cars that were more like uninteresting appliances than the attractive vehicles earning accolades now. Its rise to popularity is no accident, as the company has steadily poured money into research and development in its domestic market in Korea, which spills over into the rest of the world. For example, Hyundai Motor, Kia, and Hyundai MOBIS (Hyundai’s global parts company) are banding together to invest $18 billion into EVs. The goal: to catapult Hyundai Motor Group into the global top three global automakers by 2030 with a planned total lineup of 31 EV models. 

Every year, the EPA issues a trend report on the industry’s fuel economy and emissions, and in its most recent report it called out Kia’s performance as exceptional. The automaker recognized that its fuel economy and emissions had been improving year over year, but it wasn’t anticipating doing as well as it did in the report.

“To be frank, it was a little bit of a surprise,” says Steve Kosowski, the company’s manager of long-range strategy and planning. “We knew we were doing well, but seeing it in the EPA report was a nice pat on the back for the company.”

At the intersection of EV product and portfolio planning, regulatory compliance, and charging infrastructure, Kosowski has a job that involves peering ten years into Kia’s future. Soothsayers like Kosowski tackle the tricky prospect of figuring out where the company should spend its time and money, straddling the line between practical planning (production vehicles) and wishful thinking (concept cars and futuristic prognostication). 

With future-predicting analysts like Kosowski on board, the automaker doesn’t have just an inkling about which cars are going to be a success; they have enough data to support their predictions. 

None of this means that Kia is happy to sit back and bask in its achievements. At its 2023 CEO Investor Day on April 5, 2022, Kia ramped up its electrification target even more, announcing it was aiming for 1.6 million EV sales by 2030.

Getting (way) beyond boring crossovers

Any and all success the company is seeing now is due to its meticulous planning and analysis at a micro and macro level, and the product planners read the tea leaves to see what trends are unfurling. Generally, Kosowski says, product planners start at a high level, looking at industry volumes and analyzing trends to get a forecast that is as targeted as possible.

“The first big step is to understand the regulatory requirements,” Kosowski says. “That gives you a really good calculus on how many EVs you need to sell, how many trucks you can sell, and so on. I like to look at it like a wheel: you have the consumer research spoke, the supplier spoke, the dealer spoke, and you start to get a flavor for what people like and want and what they’re willing to pay for.”

Kia seems to be cranking out hit after hit, riding on the wave of success from its Telluride SUV, which also raked in awards across the industry for its affordable, well-designed package. With SUVs taking the lion’s share of attention in the market—two in three Kia vehicles sold in 2022 were SUVs, and the company’s SUV lineup continues to expand with hybrid and plug-in hybrid options—the company is well positioned for the EV surge.

“Electrified utility was an important signal 10 years ago,” Kosowski says. “Buyers love the torque and efficiency, and they feel like they’re part of the solution [to the challenges of climate change].”

On top of that, Kia and Hyundai vehicles on the global EV platform are capable of charging up in less than 20 minutes. That’s faster than many EVs on the market and goes a long way toward adoption. Soon, Kia’s three-row EV9 SUV will become available, opening up competition in the highly desirable family segment. 

Now, if Kosowski and his prognosticating colleagues can map out a way to shore up the infrastructure so that range isn’t a concern, the EV future will roll out as smoothly as Kia hopes it will. 

The post Kia’s powerful EV6 GT has supercar-like chops appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Proposed vehicle emissions standards would be America’s toughest yet https://www.popsci.com/technology/epa-electric-vehicle-emissions-targets/ Thu, 13 Apr 2023 01:00:00 +0000 https://www.popsci.com/?p=533625
 Last year, EV sales accounted for less than 6 percent of overall vehicle sales and 2 percent of heavy-truck sales.
Last year, EV sales accounted for less than 6 percent of overall vehicle sales and 2 percent of heavy-truck sales. DepositPhotos

The EPA plan ratchets up emissions targets by more than double current rules.

The post Proposed vehicle emissions standards would be America’s toughest yet appeared first on Popular Science.

]]>
 Last year, EV sales accounted for less than 6 percent of overall vehicle sales and 2 percent of heavy-truck sales.
Last year, EV sales accounted for less than 6 percent of overall vehicle sales and 2 percent of heavy-truck sales. DepositPhotos

This article was originally featured on The Drive.

The U.S. Environmental Protection Agency proposed Wednesday perhaps its most sweeping changes to vehicle emissions controls in its history, a far-reaching measure that could effectively mandate a tenfold increase in EV sales by the middle of the next decade. Under the proposed plan, electric-car sales would comprise more than two-thirds of overall light-duty new car sales and nearly half of all medium-duty car sales by 2032. The plan would also ratchet up emissions targets for internal combustion-powered vehicles by roughly 13 percent every year from 2027 to 2032, compared to 5-10 percent increases proposed for 2023-2026 model-year cars. The EPA’s proposal will likely face a mountain of legal challenges before it’s adopted. Still, regulators said they would build in language that would make the standards tougher to repeal for subsequent administrations.

“By proposing the most ambitious pollution standards ever for cars and trucks, we are delivering on the Biden-Harris administration’s promise to protect people and the planet, securing critical reductions in dangerous air and climate pollution and ensuring significant economic benefits like lower fuel and maintenance costs for families,” EPA Administrator Michael Regan said in a statement.

The EPA said its proposal could save the average new-car buyer $12,000 over the lifetime of the vehicle, compared to an ICE engine. The proposal for light- and medium-duty vehicles was accompanied by a proposal for heavy-duty fleets to electrify 25 percent of their trucks and half of all new buses to be electric by 2032. This week the EPA also proposed recalculating how efficiency is measured among electrified vehicles to represent the impact of those cars more accurately in Corporate Average Fuel Economy figures. Combined, the total impact of the EPA’s suggested regulations could vastly reduce the amount of greenhouse gas emissions produced on America’s roadways. However, the ambitious targets exceed President Joe Biden’s initial target of 50 percent EV sales by the decade’s end. 

The Alliance for Automotive Innovation, which represents most major automakers in America, CEO John Bozzella called the proposal “aggressive by any measure. By that I mean it sets automotive electrification goals in the next few years that are … very high,” he wrote, according to Automotive News

Automakers and unions are likely to push back against the regulations, which they’ve said could cost jobs and further hike the prices of new cars. Last year, EV sales accounted for less than 6 percent of overall vehicle sales and 2 percent of heavy-truck sales. In addition to building battery facilities in the U.S. that won’t come online for several years, automakers have warned that existing and planned charging infrastructure may not handle such a dramatic increase in EVs, and critical mineral supplies wouldn’t be enough. The Biden administration has offered trillions in spending to accelerate both while pushing forward with ambitious targets. The EPA doesn’t have the mandate to quantify overall vehicle sales but instead can set targets to force automakers to otherwise comply with those stringent rules. 

Going forward, the plan will be open to public comment and face scrutiny from legislators and others, likely including legal challenges. 

The post Proposed vehicle emissions standards would be America’s toughest yet appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Everything we love about Hyundai’s newest EV https://www.popsci.com/technology/hyundai-ioniq-6-drive-review/ Mon, 10 Apr 2023 11:00:00 +0000 https://www.popsci.com/?p=531967
hyundai ioniq 6
The Hyundai Ioniq 6. Kevin Williams

Beneath its striking exterior, the Ioniq 6 is a wonderfully normal electric vehicle that's delightful to drive.

The post Everything we love about Hyundai’s newest EV appeared first on Popular Science.

]]>
hyundai ioniq 6
The Hyundai Ioniq 6. Kevin Williams

The automotive industry may be going through an electric car revolution, but at the same time, actual cars seem left behind. The shift to EVs has been heavy on electric crossovers like the Tesla Model Y, and pickups like Ford’s F-150 Lightning, while the traditional sedan and hatchback shape has been left by the wayside. Pickup trucks, crossovers, and SUVs are quickly becoming the de facto choice among most consumers, regardless of whether those vehicles are electric or gas-powered. But thankfully, Hyundai has embraced the sedan and delivered an interesting aero steampunk electric four-door that doesn’t resemble anything else on the road.

Hyundai’s latest and greatest EV, the Ioniq 6, is ultra-aerodynamic and chic, eschewing the practicality associated with a hatchback or crossover shape (and the easy cargo storage that comes with that configuration), but for good reason. The vehicle’s targeted clientele includes the young professionals and millennials who aren’t necessarily focused on outright practicality. Instead, those customers want design, style, driving engagement, and range; they’d rather trade off practicality to get those things.

And thus, the Ioniq 6 is a very different-looking vehicle from its sister model, the Ioniq 5, despite sharing a platform. While the Ioniq 5 is a practical crossover-shaped retro homage to Hyundai’s first car, the Pony, the Ioniq 6 takes a different route. The Ioniq 6 feels like a pastiche of 1930s-era aerodynamic streamlined cars like the Chrysler Airflow or the Stout Scarab, but mixed in with an obscure callback to 1990s-era efforts from Hyundai itself. Add in a dash of square video-game-like pixel details in the taillights, and that’s the Ioniq 6.

Regardless of how you might feel about the execution, the Ioniq 6 is a visually striking car. From the side view, the very short nose quickly sweeps into the main arch that comprises most of the Ioniq 6’s cabin. Then, that arch gently flows into the rear trunk area, terminating in a rear overhang and decklid that visually appears to make the rear of the car look longer than the front. 

The Ioniq 6 is organic in its form—an odd, funky-looking design that somehow works. The result is a car that appears delicate, petite, and low-slung, with just a touch of retro; if you squint, the front fascia and overall shape feel like a strangely modernized, ultra-sleek version of the 1996 Hyundai Elantra. 

Just a touch of retro.
Just a touch of retro. Kevin Williams

The Ioniq 6 is different from its siblings

It is easy to think that with the shift to electrified transit, every EV will look, feel, and drive the same. After all, the Ioniq 6, Kia EV6, Genesis GV60, and Ioniq 5 all share a technology platform: Hyundai’s Electric Global Modular Platform, or E-GMP for short, forms the basis of most new Hyundai, Genesis, and Kia EVs, including the forthcoming EV9 seven-passenger crossover. That’s a very diverse range of products, and they all share common motor, battery, and platform designs. So, does that mean they’ll be the same car?

In a word, no. Hyundai’s engineering team went to work differentiating the Ioniq 6 from its platform kin. The Ioniq 6 aims for a more engaging driver-centric experience, without compromising a composed and smooth ride. The engineers learned from the Ioniq 5, and they’ve tweaked and changed things about the Ioniq 6, just to make it that much different from the Ioniq 5, and in turn, other E-GMP platform vehicles. Hyundai likens this to chess pieces, where each model has a different role, but they’re all part of the same cohesive lineup. 

[Related: Hyundai’s new Ioniq 6 is a long-range EV with Art Deco vibes]

Inside, much of the Ioniq 6’s interior instrument panel and dashboard elements are shared with the Kia EV6 and Hyundai Ioniq 5. This means a twin-screen setup controls most of the interactions, for the radio and other general controls. A line of physical buttons for HVAC controls and volume sit underneath it. Most of the user interface screens and infotainment setups are the same as other EV Hyundai and Kia products, which means that they’re good. Those systems are easy to use and well organized. If using their systems is too hard, the Ioniq 6 comes with Apple CarPlay and Android Auto.

But, that’s where the similarities between the Ioniq 6 and other Hyundai and Kia products ends. The center console sits close to the driver and passenger, coming up to meet the dashboard. The door panels are simple and switchless. The switches for the windows and locks have been moved to the center console. It’s more claustrophobic than the Ioniq 5, but here, it feels distinctly sporty. 

hyundai ioniq 6 interior
Much of the Ioniq 6’s interior instrument panel and dashboard elements are shared with the Kia EV6 and Hyundai Ioniq 5. Kevin Williams

How the Hyundai Ioniq 6 drives

The Ioniq 6 doesn’t drive like its E-GMP siblings, either. Piloting the Ioniq 6 around the curvy roads of Scottsdale, Arizona was a delight. The car silently and accurately slinks around curves, with the precision of sci-fi cyberpunk killer snake assassin. Whereas the Ioniq 5 feels soft almost to the point of wallowy, the Ioniq 6 is dialed in. The less-upright seats and lower center of gravity make the Ioniq 6 feel more engaging on curvy roads, unlike the Ioniq 5.

The Ioniq 6 doesn’t weigh that much less than the Ioniq 5, and yet, the Ioniq 6’s character is lighter and more jovial, compared to the serious and utilitarian Ioniq 5. The steering is more engaging than the Ioniq 5, although it’s not quite as sharp as the Tesla Model 3. Driving the Ioniq 6 against its platform-mates gives the impression that Hyundai’s engineers took the command to make the Ioniq 6 a sharp-handling sedan very seriously.

The motivating power for the Ioniq 6 comes in one of two forms. In rear-wheel-drive models, a single rear-mounted motor fed by either a 53 kWh battery (for standard range) or 77.4 kWh battery (for long range) turns the rear wheels. It’s good for a healthy 225 horsepower (149 horsepower in the standard range), and 258 ft/lbs of torque. The higher-equipped, dual-motor, AWD trims can produce 340 horsepower and 448 ft/lbs of torque. That will shunt the car from 0-60 in under 4 seconds. Both trims are more than adequate on the street, allowing for brisk performance no matter which motor and battery combination.

The Ioniq 6’s standard-range 53 kWh battery pack is smaller than the Ioniq 5 standard range’s 58 kWh battery. Yet, the Ioniq 6 can go further on a smaller battery pack. Even in the smallest model, Hyundai claims a range of 240 miles. The Nissan Leaf can’t go as far as the Ioniq 6, and the Bolt can crest 258 miles (or 247 miles in EUV form). The range-leading SE trim in single motor, rear-wheel form can achieve 361 miles on a single charge, which is very impressive for a relatively small 77.4 kWh battery. This is part of how optimized the Ioniq 6 is compared to its EV kin on the same platform. Its wind-cheating shape allows Hyundai to do more with less. 

The Ioniq 6 is normal, but also not normal

The Ioniq 6 is strange to look at, but nice to drive. True, it is not without its shortcomings; there is no wireless Apple CarPlay or Android Auto. The front trunk could likely only comfortably fit one roll of discount paper towels, and the aerodynamic shape means that headroom for rear passengers is compromised, especially when equipped with the optional sunroof. 

Not much space in the front trunk.
Not much space in the front trunk. Kevin Williams

But, for many, those gripes will be fairly minor inconveniences and not outright deal breakers. The Ioniq 6’s direct competition, the Tesla Model 3 and the Polestar 2, feel and look as if they’ve driven out of the future. However, those cars can have frustrating user interfaces and Teslas have related quality-of-build concerns. And both those cars are online-oriented buying experiences. 

By comparison, the Ioniq 6 should be able to be purchased at any Hyundai dealer. Plus, the infotainment dials feel just like any other Hyundai or Kia product. It has physical buttons that don’t require pawing through complicated computerized screens to operate. It’s a very simple, uncomplicated car at its core. That’s a huge asset for those interested in going electric, but turned off by the convoluted techno-wizardry that is inherent to new EV models.

Even the pricing of the Ioniq 6 is attractively normal. The base Ioniq 6 standard range will start at $42,715, including the destination fee. That’s about $2,000 cheaper than the Tesla Model 3, although it can’t go quite as far—it’ll travel a mere 240 miles compared to the 272 of the Model 3. But for $46,615, (about $2,000 more than the base Model 3 long-range RWD), the Ioniq 6 can go nearly 100 miles further. That’s a really attractive deal.

That’s kind of the ethos of the Ioniq 6; it’s unconventional to look at, but everything else is satisfyingly conventional and has a strong value. For drivers who want an eye-catching EV that can go the distance, the Ioniq 6 is worth a look. 

The post Everything we love about Hyundai’s newest EV appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Tesla employees allegedly viewed and joked about drivers’ car camera footage https://www.popsci.com/technology/tesla-camera-abuse/ Fri, 07 Apr 2023 13:30:00 +0000 https://www.popsci.com/?p=532506
Tesla vehicle owners' 'private scenes of life' were seen by employees via the drivers' car cameras, report says.
Tesla vehicle owners' 'private scenes of life' were seen by employees via the drivers' car cameras, report says. Deposit Photos

A Reuters report claims employees also shared and Photoshopped the sensitive images into memes.

The post Tesla employees allegedly viewed and joked about drivers’ car camera footage appeared first on Popular Science.

]]>
Tesla vehicle owners' 'private scenes of life' were seen by employees via the drivers' car cameras, report says.
Tesla vehicle owners' 'private scenes of life' were seen by employees via the drivers' car cameras, report says. Deposit Photos

A new investigation from Reuters alleges Tesla employees routinely viewed and shared “highly invasive” video and images taken from the onboard cameras of owners’ vehicles—even from a Tesla owned by CEO Elon Musk.

While Tesla claims consumers’ data remains anonymous, former company workers speaking to Reuters described a far different approach to drivers’ privacy—one filled with rampant policy violations, customer ridicule, and memes, they claim.

Tesla’s cars feature a number of external cameras that inform vehicles’ “Full Self-Driving” Autopilot system—a program that has received its own fair share of regulatory scrutiny regarding safety issues. The AI underlying this technology, however, requires copious amounts of visual training, often through the direction of human reviewers such as Tesla’s employees, according to the new report. Workers collaborate with company engineers to often manually identify and label objects such as pedestrians, emergency vehicles, and roads’ lane lines, alongside a host of other subjects encountered in everyday driving scenarios, as detailed in the Reuters findings. This, however, requires access to vehicle cameras.

[Related: Tesla is under federal investigation over autopilot claims.]

Tesla owners are led to believe camera feeds were handled by employees sensitively: The company’s Customer Privacy Notice states owners’ “recordings remain anonymous and are not linked to you or your vehicle,” while Tesla’s website states in no uncertain terms, “Your Data Belongs to You.”

While multiple former employees confirmed to Reuters the files were by-and-large used for AI training, that allegedly didn’t stop frequent internal sharing of images and video on the company’s internal messaging system, Mattermost. According to the report, staffers regularly exchanged images they encountered while labeling footage, often Photoshopping them for jokes and turning them into self-referential emojis and memes.

While one former worker claimed they never came across particularly salacious footage, such as nudity, they still saw “some scandalous stuff sometimes… just definitely a lot of stuff that, like, I wouldn’t want anybody to see about my life.” The same former employee went on to describe encountering “just private scenes of life,” including intimate moments, laundry contents, and even car owners’ children. Sometimes this also included “disturbing content,” the employee continued, such as someone allegedly being dragged to a car against their will.

Although two ex-employees said they weren’t troubled by the image sharing, others were so perturbed that they were wary of driving Tesla’s own company cars, knowing how much data could be collected within them, regardless of who owned the vehicles. According to Reuters, around 2020, multiple employees came across and subsequently shared a video depicting a submersible vehicle featured in the 1977 James Bond movie, The Spy Who Loved Me. Its owner? Tesla CEO Elon Musk.

The post Tesla employees allegedly viewed and joked about drivers’ car camera footage appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Hyundai’s new Ioniq 6 is a long-range EV with Art Deco vibes https://www.popsci.com/technology/hyundai-ioniq-6-tech-specs/ Mon, 03 Apr 2023 20:30:00 +0000 https://www.popsci.com/?p=525107
ioniq 6
The Ioniq 6 EV. Kristin Shaw

This aerodynamic wonder will travel for 361 miles on a charge, which is 58 miles better than its predecessor. Here's how the automaker made such impressive progress.

The post Hyundai’s new Ioniq 6 is a long-range EV with Art Deco vibes appeared first on Popular Science.

]]>
ioniq 6
The Ioniq 6 EV. Kristin Shaw

The sleek new all-electric Ioniq 6 looks very different from the original Ioniq EV. It doesn’t even look like the Ioniq 5, for that matter. It’s based on Hyundai’s Prophecy concept, which was unveiled in 2020. But the Ioniq 6 is measurably more aerodynamic than that concept or the Ioniq 5, with design inspiration from the fantastical, Art Deco 1930s-era Stout Scarab.

Looks are only sheet-metal deep, however, and the technological underpinnings are what makes Hyundai’s newest EV so interesting. The inner workings of the Ioniq 6 include an updated battery module with improved cooling functions and so-called “hairpin wiring” that packs more energy into a smaller space.

Here’s how all those things work together to create more range and power for this EV.

Aerodynamics and “Pop-Tart” battery cells

When Hyundai launched the Ioniq 5 nearly two years ago, it was a big improvement over the original Ioniq EV from 2016, which topped out at 100 miles per hour and offered only 124 miles of range. The Ioniq 6 has taken things up another notch, maxing out at an impressive 361 miles of range with the rear-wheel-drive Long Range version of the EV. That’s 58 miles better than the best of the Ioniq 5 options and nearly triple the range of the original.

How did Hyundai make that kind of progress over a quick couple of years? One key factor is the aerodynamic improvements, on display with a swoopy ducktail in the back, active air flaps, and a low-to-the-ground nose. The coefficient of drag, which quantifies the aerodynamics, is 0.21 for the Ioniq 6, compared with 0.29 for the boxier Ioniq 5. (For efficiency, you want that number to be as low as possible.) At its starting price of $42,715, the Ioniq 6 has no business showing off a drag coefficient that is better than cars that cost three times as much, but it does.

Another important element is the battery design, which in the case of the Ioniq 6 is built into Hyundai’s Electric-Global Modular Platform (E-GMP). Also used as the underpinning platform for the Ioniq 5, this versatile platform acts as the ground floor for a row of battery modules.

The Ioniq 6 is priced starting at $42,715.
The Ioniq 6 is priced starting at $42,715. Kristin Shaw

“Each battery module is made up of individual cells that are stacked neatly, like a stack of Pop-Tarts,” Dean Schlingmann, Hyundai manager of electrified management systems explains. “We can vary the number of modules and configurations depending on the segment and what the goals are for that vehicle.”

With the packaging improvements Hyundai has made to the battery module, the automaker has been able to reduce the part count significantly, which lightens the vehicle overall. Energy density increased by 7 percent. 

“We can cram more electrons in [the battery], which means more EV range or [heating and air conditioning] usage, wherever you want to use it,” Schlingmann says. 

Amping up the density with flat wires

For all intents and purposes, Schlingmann says, the Ioniq 6 motor is identical to the Ioniq 5’s, but with improvements to the motor winding design. Hyundai uses hairpin winding technology, named for the metal pins used in a salon for elaborate hairstyles, and this technology is widely known to be more efficient, with a higher power density and performance under a variety of hot and cold settings.

“Instead of using a perfectly round wire that goes through some of the winding gaps in the motor housing, we have more of a flat, rectangular wire. The [hairpin wiring] fills the gaps in the spaces around the motor itself more efficiently,” Schlingmann explains. “The more dense you can get the wire (or the more fill you can achieve in those gaps) the more power or performance—or whatever characteristic you’re looking to push with the motor—you can do so more effectively.”

The effectiveness lends itself to other applications, as well. Schlingmann helped develop the vehicle-to-load (V-to-L) capability for the Ioniq 6. This function takes advantage of Hyundai’s bidirectional power capability and allows access for customers to 110-volt power. There is an interior outlet available in Limited trim, and users can also export power with a V-to-L connector accessory. 

Schlingmann personally tested several plug-in devices with the Ioniq 6: air compressors and even a welder, which like an air compressor is not recommended but shows that pickup trucks aren’t the only electric vehicles that can power up a house. If you want to plug in a blender and whip up a smoothie on the road, you can do that. It might not be the ideal camping vehicle because of its ground clearance, but it could be useful for camping at less-remote sites. 

Range is the magic word

At $42,715, Hyundai’s Ioniq 6 is priced to compete with the Tesla Model 3, which starts at $44,380. The EPA says the Model 3 will get 272 miles of EPA-estimated driving range with the base rear-wheel-drive model, and up to 358 miles with the Long Range model (compared to the Ioniq 6’s max range at 361 miles). 

Both of these EVs can charge up quickly. In 15 minutes, Tesla’s SuperCharger network can pump 200 miles of range back into a Model 3. The Ioniq 6 can go from 10 percent to 80 percent charged in 18 minutes. Automakers are eager to kick the ball down the road and get customers to start buying EVs, and that charge-up time makes a difference.

Most trims of the new Ioniq 6 are on sale now at dealerships.

Read our full review, here.

The post Hyundai’s new Ioniq 6 is a long-range EV with Art Deco vibes appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
The new Lamborghini Revuelto is a powerful hybrid beast https://www.popsci.com/technology/lamborghini-revuelto-plug-in-hybrid/ Mon, 03 Apr 2023 11:00:00 +0000 https://www.popsci.com/?p=524666
The Lamborghini Revuelto is the automaker's first plug-in hybrid.
The Lamborghini Revuelto is the automaker's first plug-in hybrid. Lamborghini

This new plug-in hybrid is an important first for the Italian automaker, but its electric-only range is just six miles.

The post The new Lamborghini Revuelto is a powerful hybrid beast appeared first on Popular Science.

]]>
The Lamborghini Revuelto is the automaker's first plug-in hybrid.
The Lamborghini Revuelto is the automaker's first plug-in hybrid. Lamborghini

For decades, Automobili Lamborghini has built its reputation on creating supercars with large-displacement engines. Mid-mounted naturally aspirated V12 combustion engines have been its signature since the debut of the classically stunning Miura in 1966.

But change is on the horizon, and Lamborghini’s rivals at Ferrari and McLaren have already begun the shift toward turbocharged smaller-displacement engines to maximize efficiency. Characteristically, Lamborghini is plotting a different course. Battery-electric Lamborghinis are on the CAD screens of the company’s engineers, but before they debut, Lamborghini aims to give its naturally aspirated V12 models a fitting send-off with a hybrid-electric assist.

The Revuelto is that V12 tribute model. As is customary, the car’s name comes from a traditional Spanish fighting bull. Revuelto was famous in 1880, so you’re forgiven if you haven’t heard of him. The word means “mixed up,” and it was chosen in reference to the Revuelto’s combination of combustion and electric power. The bull was said to be mixed up because eight different times he leapt out of the ring into the crowd in the stands.

The Revuelto is a plug-in hybrid-electric vehicle

In a step toward the electric future, Lamborghini has for the first time ever added a plug-in hybrid drivetrain that boosts efficiency and, crucially, lets the Revuelto drive into the fashionable city centers of Europe, where there are often prohibitions on combustion power. This is only the first from Lamborghini, which will electrify its entire portfolio in coming years, states chairman and CEO Stephan Winkelmann during my visit to Lamborghini’s Sant’Agata Bolognese, Italy headquarters to view the Revuelto.

“The Miura and Countach established the V12 engine as an icon of Lamborghini,” notes Winkelmann. 

“However, things change and we have new challenges in front of us right here and right now,” he continues. “Geopolitics are a constant companion to all of our planning.” 

The company will roll out a hybrid-electric Huracan by the end of 2024, with the first battery-electric cars arriving in 2028 or 2029. Considering the likely finite lifespan of the Revuelto, one might expect that Lamborghini would make the vehicle simply an evolutionary development, but instead they went the extra mile with a full redesign. 

The Revuelto features an all-new carbon fiber platform, an all-new combustion engine, an all-new transmission, and even a new drivetrain layout in the chassis. The chassis is 10 percent lighter and 25 percent stiffer than before, and employs a new carbon fiber front impact structure in place of the Aventador’s aluminum structure.

Lamborghini Revuelto
The V12 and trio of electric motors produce a combined 1,000 horsepower. Lamborghini

The Revuelto’s V12 engine, explained 

The new 814-horsepower, 6.5-liter, L545 V12 engine still rides behind the cockpit, nestled in an all-aluminum rear subframe that is where the rear suspension attaches. At a time when rivals’ engines are muted by turbochargers, you’ll hear the Revuelto’s song better than ever, because the L545 now spins to a 9,500-rpm rev limit and explodes each combustion stroke with the force of a 12.6:1 compression ratio rather than the Aventador’s 11.8:1 ratio.

This 12-cylinder beast is even 37 pounds lighter than the Aventador’s power plant. As the Revuelto contains the last Lamborghini V12, we can chart the progress from the original engine in the Miura, which displaced 3.5 liters, spun to 6,500 rpm and churned out 280 horsepower under the more optimistic rating system of that era.

The Miura’s V12 rode side saddle, bolted transversely across the back of the cockpit, with its transaxle behind it. Its replacement, the Countach, rotated the V12 90 degrees into a longitudinal position and routed power to a transmission installed ahead of the engine. This “Longitudinale Posteriore” location was the source of the Countach’s LP500 designation, and the layout has remained that way ever since.

Until now. The Revuelto’s 8-speed dual-clutch paddle-shifted transmission was designed by Lamborgini’s engineers and is built by Graziano, the same company that built the Aventador’s transmission and also supplies them to McLaren for that company’s sports cars like the Artura, which is also a plug-in hybrid. The Aventador’s single-clutch automated manual transmission was consistently criticized for clunky shifts, so the buttery smooth action of the new dual clutch should be a dramatic improvement, especially in urban driving.

The gearbox contains a 147.5-hp electric motor from Germany’s Mahle that boosts the power going to the road. The electric motor also serves as the V12’s starter, and provides the Revuelto’s reverse function, eliminating the need for a reverse gear in the transmission. This motor can also work as a generator, letting the combustion engine recharge the battery pack when driving in Recharge mode.

This gearbox is a transverse design, mounted behind the longitudinal engine, which provides abundant packaging benefits. But crucially for the hybrid-electric Revuelto, this location leaves the car’s center tunnel vacant, so there is space there now for the car’s 3.8-kilowatt-hour lithium-ion battery pack.

The Revuelto’s battery and electric motors 

Yes, 3.8 kWh is a tiny battery. Lamborghini engineers wanted to minimize the amount of mass the battery would add to the car, and the short six miles of electric-only driving range should be enough to get the Revuelto to the trendy urban club’s valet parking line on electric power. 

The Revuelto is all-wheel drive thanks to a pair of 147.5-hp electric motors under the front hood. These are Yasa axial flux motors from Britain, another similarity to the McLaren Artura, which also employs compact pancake-shaped axial-flux motors.

The V12 and trio of electric motors produce a combined 1,000 horsepower. Remember that combustion engines and electric motors produce their peak power at different speeds, so you can’t just add up the peak power of all the motors in a hybrid system to calculate the actual horsepower total. They combine to push the Revuelto to 60 mph in less than 2.5 seconds and to a top speed of more than 219 mph.

Revuelto’s performance also benefits from advanced aerodynamics in a body shell that incorporates extra space for improved comfort. There’s an extra inch of headroom to make it easier to operate while wearing a helmet for track driving and the added 3.3 inches of legroom is a blessing, as the front wheel wells intrude into the footwell of mid-engine cars like the Revuelto.

Despite the added size, the Revuelto optimizes the balance between drag and downforce using adaptive aerodynamics, such as a rear wing that can lie flat for less drag or stand up for traction-boosting downforce. The transverse transmission leaves more space under the car’s rear, so the diffuser ramps upward at a steeper angle, contributing to the 74 percent increase in rear downforce.

At the front, downforce is increased by 33 percent thanks to a complex front splitter. That’s the chin jutting out from beneath the front bumper, and on the Revuelto it has a radial leading edge in the center between the headlights and slanted outer edges that provide downforce and create vortices (like the ones you might see off airplane wing tips in humid air) to push airflow away from the drag-inducing front tires.

Lamborghini Revuelto
The engine, albeit beneath a cover, is visible in the rear. Lamborghini

The engine is exposed (kind of) 

Revuelto’s coolest styling detail is its exposed engine. While typical cars have their engines covered with sheet metal hoods, and exhibitionist supercars have recently showcased their power plants beneath glass covers, the Revuelto’s combustion V12 is on proud display through an opening in the engine cover. At least, it appears to be. That’s because the engine wears a plastic cover that looks like a crinkle-finish intake plenum, so that is what is actually visible from outside the car. 

The engine’s exhaust note is authentic, even if the engine itself is wearing a mask. Since this is the final V12, and to draw a contrast with turbocharged rivals with fewer cylinders, Lamborghini engineers prioritized Revuelto’s sound, says chief technical officer Rouven Mohr. “It is not only about the numbers,” he says, referring to the car’s impressive performance. “It is also about the heart. The sound. And the Revuelto is the best-sounding Lamborghini ever.”

Engineers specifically targeted the sharp frequencies in the engine’s exhaust note to cultivate a mellower bellow, he explains. And in an unprecedented Lamborghini capability, the car’s six miles of pure electric driving range means that you can also drive completely silently when exiting your neighborhood in the morning. Your neighbors will surely think this combination of roar and snore is the best kind of “mixed up” at 6 am.

The post The new Lamborghini Revuelto is a powerful hybrid beast appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Colombia is deploying a new solar-powered electric boat https://www.popsci.com/technology/colombia-electric-patrol-boat-drone/ Fri, 31 Mar 2023 14:13:04 +0000 https://www.popsci.com/?p=524519
Colombia is not the only country experimenting with electric uncrewed boats. Above, an Ocean Aero Triton drone (left) and a Saildrone Explorer USV. These two vessels were taking part in an exercise involving the United Arab Emirates Navy and the US Navy in February, 2023.
Colombia is not the only country experimenting with electric uncrewed boats. Above, an Ocean Aero Triton drone (left) and a Saildrone Explorer USV. These two vessels were taking part in an exercise involving the United Arab Emirates Navy and the US Navy in February, 2023. Jay Faylo / US Navy

The 29-foot-long vessel is uncrewed, and could carry out intelligence, surveillance, and reconnaissance missions for the Colombian Navy.

The post Colombia is deploying a new solar-powered electric boat appeared first on Popular Science.

]]>
Colombia is not the only country experimenting with electric uncrewed boats. Above, an Ocean Aero Triton drone (left) and a Saildrone Explorer USV. These two vessels were taking part in an exercise involving the United Arab Emirates Navy and the US Navy in February, 2023.
Colombia is not the only country experimenting with electric uncrewed boats. Above, an Ocean Aero Triton drone (left) and a Saildrone Explorer USV. These two vessels were taking part in an exercise involving the United Arab Emirates Navy and the US Navy in February, 2023. Jay Faylo / US Navy

Earlier this month, a new kind of electric boat was demonstrated in Colombia. The uncrewed COTEnergy Boat debuted at the Colombiamar 2023 business and industrial exhibition, held from March 8 to 10 in Cartagena. It is likely a useful tool for navies, and was on display as a potential product for other nations to adopt. 

While much of the attention in uncrewed sea vehicles has understandably focused on the ocean-ranging craft built for massive nations like the United States and China, the introduction of small drone ships for regional powers and routine patrol work shows just far this technology has come, and how widespread it is likely to be in the future.

“The Colombian Navy (ARC) intends to deploy the new electric unmanned surface vehicle (USV) CotEnergy Boat in April,” Janes reports, citing Admiral Francisco Cubides. 

The boat is made from aluminum and has a compact, light body. (See it on Instagram here.) Just 28.5 feet long and under 8 feet wide, the boat is powered by a 50 hp electric motor; its power is sustained in part by solar panels mounted on the top of the deck. Those solar panels can provide up to 1.1 kilowatts at peak power, which is enough to sustain its autonomous operation for just shy of an hour.

The vessel was made by Atomo Tech and Colombia’s state-owned naval enterprise company, COTECMAR. The company says the boat’s lightweight form allows it to take on different payloads, making it suitable for “intelligence and reconnaissance missions, port surveillance and control missions, support in communications link missions, among others.”

Putting sensors on small, autonomous and electric vessels is a recurring theme in navies that employ drone boats. Even a part of the ocean that seems small, like a harbor, represents a big job to watch. By putting sensors and communications links onto an uncrewed vessel, a navy can effectively extend the range of what can be seen by human operators. 

In January, the US Navy used Saildrones for this kind of work in the Persian Gulf. Equipped with cameras and processing power, the Saildrones identified and tracked ships in an exercise as they spotted them, making that information available to human operators on crewed vessels and ultimately useful to naval commanders. 

Another reason to turn to uncrewed vessels for this work is that they are easier to run on fully  electric power, as opposed to a diesel or gasoline. COTECMAR’s video description notes that the COTEEnergy Boat is being “incorporated into the offer of sustainable technological solutions that we are designing for the energy transition.” Making patrol craft solar powered and electric starts the vessels sustainable.

While developed as a military tool, the COTENERGY boat can also have a role in scientific and research expeditions. It could serve as a communications link between other ships, or between ships and other uncrewed vessels, ensuring reliable operation and data collection. Putting in sensors designed to look under the water’s surface could aid with oceanic mapping and observation. As a platform for sensors, the COTEnergy Boat is limited by what its adaptable frame can carry and power, although its load capacity is 880 pounds.

Not much more is known about the COTEnergy Boat at this point. But what is compelling about the vessel is how it fits into similar plans of other navies. Fielding small useful autonomous scouts or patrol craft, if successful, could become a routine part of naval and coastal operations.

With these new kinds of boat come new challenges. Because uncrewed ships lack humans, it can make them easier targets for other navies or possibly maritime criminal groups, like pirates. The same kind of Saildrones used by the US Navy to scout the Persian Gulf have also been detained, if briefly, by the Iranian Navy. With such detentions comes the risk that data on the ship is compromised, and data collection tools figured out, making it easier for hostile forces to fool or evade the sensors in the future.

Still, the benefits of having a flexible, solar-powered robot ship outweigh such risks. Inspection of ports is routine until it isn’t, and with a robotic vessel there to scout first, humans can wait to act until they are needed, safely removed from their remote robotic companions.

Watch a little video of the COTEnergy Boat below:

The post Colombia is deploying a new solar-powered electric boat appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
These hackers revealed security vulnerabilities in a Tesla—and won a car https://www.popsci.com/technology/tesla-security-vulnerabilities-competition/ Tue, 28 Mar 2023 19:07:39 +0000 https://www.popsci.com/?p=523604
a tesla headlight
Researchers from a French security firm, Synacktiv, won a Tesla after demonstrating vulnerabilities in it. Vlad Tchompalov / Unsplash

The exercise is a reminder that nearly everything can be hacked, even computers on wheels.

The post These hackers revealed security vulnerabilities in a Tesla—and won a car appeared first on Popular Science.

]]>
a tesla headlight
Researchers from a French security firm, Synacktiv, won a Tesla after demonstrating vulnerabilities in it. Vlad Tchompalov / Unsplash

As we’ve learned over the past few years, almost anything that connects to the internet, uses Bluetooth or any other wireless protocols, or simply has a computer chip inside can be hacked—and that includes cars. There are just too many potential vulnerabilities across all these surfaces for hackers to exploit, and every time there’s a software update, there is a chance that new ones get introduced even as the old ones are patched out. (Seriously, keep your software up-to-date, though. It’s the best way to stay as secure as possible.)

With that in mind, researchers from French security firm Synacktiv have won $530,000 and a Tesla Model 3 at Pwn2Own Vancouver, a security competition where “white hat” hackers and security researchers can win the devices with previously unknown vulnerabilities (that they discover and exploit)—plus a cash prize.

The team from Synacktiv demonstrated two separate exploits. In the first, they were able to breach the Model 3’s Gateway system, the energy management interface that communicates between Tesla cars and Tesla Powerwalls, in less than two minutes. They used a Time of Check to Time of Use (TOCTOU) attack, a technique that exploits the small time gap between when a computer checks something like a security credential and when it actually uses it, to insert the necessary malicious code. For safety reasons, they weren’t hacking a real Model 3, but they would have been able to open the car’s doors and front hood, even while it was in motion. 

The second exploit allowed the hackers to remotely gain root (or admin) access to the mock Tesla’s infotainment system and from there, to gain control of other subsystems in the car. They used what’s known as a heap overflow vulnerability and an out-of-bounds write error in the Bluetooth chipset to get in. Dustin Childs, head of threat awareness at Trend Micro’s Zero Day Initiative (ZDI), told Dark Reading, “The biggest vulnerability demonstrated this year was definitely the Tesla exploit. They went from what’s essentially an external component, the Bluetooth chipset, to systems deep within the vehicle.” 

According to TechCrunch, Tesla contends that all the hackers would have been able to do is annoy the driver, though the researchers themselves aren’t so sure. Eloi Benoist-Vanderbeken, one of the Synacktiv researchers, told TechCrunch, “[Tesla] said we wouldn’t be able to turn the steering wheel, accelerate or brake. But from our understanding of the car architecture we are not sure that this is correct, but we don’t have proof of it.” Apparently they are looking forward to fact-checking Tesla’s claim as soon as they get their hands on their new Model 3. 

This is the second year in a row that Synacktiv has been able to hack a Tesla. Last year the French security team were also able to exploit the infotainment system, but weren’t able to gain enough access to the rest of the system to win the car. 

It’s worth noting that Tesla was a willing participant and provided the car to Pwn2Own. It—along with all the other companies involved—uses the competition as an opportunity to find potentially devastating “zero day” or undiscovered vulnerabilities in their devices so they can fix them. Apparently, the company is already working on a patch for these latest bugs that will roll out automatically. 

As well as Tesla, some of the big names at Pwn2Own were Oracle, Microsoft, Google, Zoom, and Adobe. An exploit using two bugs in Microsoft SharePoint was enough to win Star Labs $100,000, while two bugs in Microsoft Teams won Team Viettel $75,000. Synacktiv also picked up another $80,000 for a three-bug exploit against Oracle’s Virtual Box. 

In total, contestants found 27 unique zero-day bugs and won a combined $1,035,000 (plus a car). 

The post These hackers revealed security vulnerabilities in a Tesla—and won a car appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
The electrified Dodge Hornet offers a ‘PowerShot’ of extra horsepower https://www.popsci.com/technology/dodge-hornet-plug-in-hybrid-electric/ Mon, 27 Mar 2023 20:00:00 +0000 https://www.popsci.com/?p=523314
dodge hornet
The Dodge Hornet. Kristin Shaw

The new Dodge Hornet R/T is a plug-in hybrid with swagger. Here's what it feels like to activate its 'PowerShot' feature.

The post The electrified Dodge Hornet offers a ‘PowerShot’ of extra horsepower appeared first on Popular Science.

]]>
dodge hornet
The Dodge Hornet. Kristin Shaw

The Dodge brand leans heavily into performance, with commercials talking about “the brotherhood of muscle” and cars with names like “Demon” and “Hellcat.” So it’s no surprise that when releasing its first electrified vehicle, Dodge came up with a crossover to meet the market demand for family-friendly vehicles that includes a concession to in-your-face swagger. The new vehicle is called the Hornet, and it’s available in both a gas-only (GT) and a plug-in hybrid version (R/T).

Chris Piscitelli, one of the designers of the all-new Hornet, says the vehicle’s stinging-insect namesake is “a nasty little thing.” He says that with a mischievous grin, clearly happy with the association; the five-seater exudes intentional personality. In both drive and looks, the Hornet exhibits the Dodge legacy in the form of a small SUV that feels more like a hot hatch than a family car. 

The Hornet R/T (that stands for road/track) offers a unique feature called PowerShot. When the driver chooses Sport mode and pulls both paddle shifters (for changing gears in manual mode) simultaneously, the system tacks on a bonus 30 horsepower. Then, stepping on the accelerator and mashing it down through a palpable click triggers a mechanism called a detent that tells the car to get moving. Pronto.

the dodge hornet
The Dodge Hornet. Kristin Shaw

Dodge’s first electrified vehicle

This is Dodge’s first foray into electrification, and the brand is not taking any chances with its reputation. In its base iteration, the Hornet G/T is propelled by a 2.0-liter turbocharged inline four-cylinder engine that Dodge labeled the Hurricane4. As a plug-in hybrid, the Hornet R/T combines a turbo four-cylinder 1.3-liter engine and a single electric motor mounted to the rear axle, and together it’s good for 288 horsepower and 383 pound-feet of torque. During the presentation, Dodge representatives said the Hornet’s closest competitor is the Mazda CX-5, which gets 256 horsepower and 320 pound-feet of torque.

Dodge vehicle synthesis senior manager Brian Del Pup has worked with the automotive companies under the Stellantis umbrella (including Dodge and Chrysler) for the last two decades or so. He says the team pushed the Hornet to be as true to the brand as possible, stretching the limits of what a typical crossover—like a Subaru Outback or a Honda HR-V—might be.

“A lot of [crossovers] are appliances, and people buy them to get from point A to point B and that’s it,” Del Pup tells PopSci. “There’s a lot of things that we did with this vehicle to make it fun and make it stick out. It’s a plug-in hybrid, but that wasn’t the focus. The focus was, ‘Hey, how much performance can we get out of this architecture?’ And ‘How can we make it perform like a sports car?’ It had to feel and drive like a Dodge.”

Part of that vision included the PowerShot for the Hornet PHEV, complete with the detent that requires mashing the pedal to the floor. Other vehicles use that type of tactile click to indicate the pedal is near the end of travel, and it announces the initiation of a more aggressive maneuver. 

During testing, Del Pup was sitting in the passenger seat and encouraged me to press the accelerator more firmly until I could feel it; soon we were traveling at a much higher rate of speed as though we were experiencing a tiny wrinkle in time. 

the dodge hornet
The Dodge Hornet. Kristin Shaw

Boosting the power, 15 seconds at a time

In the Hornet R/T, a PowerShot activation shaves 1.5 seconds from the 0-to-60 time for a total of 5.6 seconds from a dead stop. That said, the feature doesn’t offer a never-ending buffet of power boosts. Depending on the battery health and state of charge, the actual boost will vary, and it lasts for about 15 seconds. 

“[PowerShot works best] at a higher state of charge and when the battery is at temperatures that high-voltage batteries like, which is around 72 degrees,” Del Pup explains. “When you deviate from that, it will still allow a PowerShot, but it may take some away based on where the system is.”

It also requires a 15-second cooldown period between activations. Unlike a video game, however, it doesn’t limit the total number of PowerShots per drive. 

Plugging the Hornet R/T into a Level 2 charger fills up the battery in about 2.5 hours, Dodge says. The 15.5-kilowatt-hour battery pack is capable of 30 miles of all-electric driving under ideal conditions, which is about three miles short of the average American commute (according to AAA). The EPA hasn’t released fuel economy numbers for the R/T, but we expect those to beat the 21 miles per gallon city/29 miles per gallon highway numbers from the Hornet GT. 

The post The electrified Dodge Hornet offers a ‘PowerShot’ of extra horsepower appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
The tricky search for just the right amount of automation in our cars https://www.popsci.com/technology/alliance-innovation-lab-autonomy-tech/ Mon, 20 Mar 2023 22:00:00 +0000 https://www.popsci.com/?p=521306
the nissan ariya
The Ariya, an EV. Nissan

The director of the Alliance Innovation Lab wants there to always be a human in the loop when it comes to vehicles that can drive themselves.

The post The tricky search for just the right amount of automation in our cars appeared first on Popular Science.

]]>
the nissan ariya
The Ariya, an EV. Nissan

Nestled in the heart of California’s high-tech Silicon Valley is the Alliance Innovation Lab, where Nissan, Renault, and Mitsubishi work in partnership. The center is a cradle-to-concept lab for projects related to energy, materials, and smart technologies in cities, all with an eye toward automotive autonomy.

Maarten Sierhuis, the global director of the laboratory, is both exuberant and realistic about what Nissan has to offer as electric and software-driven vehicles go mainstream. And it’s not the apocalyptic robot-centric future portrayed by Hollywood in movies like Minority Report.

“Show me an autonomous system without a human in the loop, and I’ll show you a useless system,” Sierhuis quips to PopSci. “Autonomy is built by and for humans. Thinking that you would have an autonomous car driving around that never has to interact with any person, it’s kind of a silly idea.”

Lessons from space

Educated at The Hague and the University of Amsterdam, Sierhuis is a specialist in artificial intelligence and cognitive science. For more than a dozen years, he was a senior research scientist for intelligent systems at NASA. There, he collaborated on the invention of a Java-based programming language and human behavior simulation environment used at NASA’s Mission Control for the International Space Station.

Based on his experience, Sierhuis says expecting certain systems to fail is wise. “We need to figure there is going to be failure, so we need to design for failure,” he says. “Now, one way to do that—and the automotive industry has been doing this for a long time—is to build redundant systems. If one fails, we have another one that takes over.”

[Related: How Tesla is using a supercomputer to train its self-driving tech]

One vein of research has Nissan partnering with the Japan Aerospace Exploration Agency (JAXA) to develop an uncrewed rover prototype for NASA. Based on Nissan’s EV all-wheel drive control technology (dubbed e-4ORCE) used on the brand’s newest EV, Ariya, the rover features front and rear electric motors to navigate challenging terrain. 

Sierhuis calls the Ariya Nissan’s most advanced vehicle to date. It is a stepping stone toward combining all the technology the lab is working on in one actual product. He and the team have switched from using a Leaf to an Ariya for its hands-on research, even simulating lunar dust to test the system’s capabilities in space.

‘There is no autonomy without a human in the loop’

There is an air of distrust of autonomous technology from some car buyers, amplified by some high-profile crashes involving Tesla’s so-called “Full Self-Driving” vehicles.

“It’s hard for OEMs to decide where and how to bring this technology to market,” Sierhuis says. “I think this is part of the reason why it’s not there yet, because is it responsible to go from step zero or step one to fully autonomous driving in one big step? Maybe that’s not the right way to teach people how to interact with autonomous systems.”

From the lab team’s perspective, society is experiencing a learning curve and so the team is ensuring that technology is rolled out gradually and responsibly. Nissan’s approach is to carefully calibrate its systems so the car doesn’t take over. Computing is developed for people, and the people are at the center of it, Sierhuis says, and it should always be about that. That’s not just about the system itself; driving should still be fun.

“There is no autonomy without a human in the loop,” he says. “You should have the ability to be the driver yourself and maybe have the autonomous system be your co-driver, making you a better driver, and then use autonomy when you want it and use the fun of driving when you want it. There shouldn’t be an either-or.”

[Related: Why an old-school auto tech organization is embracing electrification]

The Ariya is equipped with Nissan’s latest driver-assist suite, enhanced by seven cameras, five millimeter-wave radars and 12 ultrasonic sonar sensors for accuracy. A high-definition 3D map predicts the road surface, and on certain roads, Nissan says the driver can take their hands off the wheel. That doesn’t mean a nap is in order, though; a driver-attention monitor ensures the driver is still engaged.

New driver assistance technologies raise questions about the relationship between technology and drivers-to-be: What if someone learns how to drive with a full suite of autonomous features and then tries to operate a car that doesn’t have the technology; are they going to be flummoxed? Ultimately, he says, this is a topic the industry hasn’t fully worked through yet.

Making cities smarter

The Alliance Innovation Lab is also studying the roads and cities where EVs operate. So-called “smart cities” integrate intelligence not just into the cars but into the infrastructure, enabling the future envisioned by EV proponents. Adding intelligence to the environment means, for example, that an intersection can be programmed to interface with a software-enabled vehicle making a right-hand turn toward a crosswalk where pedestrians are present. The autonomous system can alert the driver to a potentially dangerous situation and protect both the driver and those in the vicinity from tragedy.  

Another way to make cities smarter is by improving the efficiency of power across the board. According to the Energy Information Administration (EIA), the average home consumes about 20 kilowatt-hours per day. Nissan’s new Ariya is powered by an 87-kilowatt battery, which is enough to power a home for four days. Currently, Sierhuis says, we have a constraint optimization problem: car batteries can store a fantastic amount of power that can be shared with the grid in a bi-directional way, but we haven’t figured out how to do that effectively.  

On top of that, car batteries use power in larger bursts than inside homes, and the batteries have limited use before they must be retired. However, that doesn’t mean the batteries are trash at that point; on the contrary, they have quite a bit of energy potential in their second life. Nissan has been harnessing both new and used Leaf batteries to work in tandem with a robust solar array to power a giant soccer stadium (Johan Cruijff Arena) in Amsterdam since 2018. In the same year, Nissan kicked off a project with the British government to install 1,000 vehicle-to-grid charging points across the United Kingdom. It’s just a taste of what the brand and its lab see as a way to overcome infrastructure issues erupting around the world as EVs gain traction.

Combining EV batteries and smart technology, Nissan envisions a way for vehicles to communicate with humans and the grid to manage the system together, in space and here on Earth.

The post The tricky search for just the right amount of automation in our cars appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
This new Lexus EV offers an aircraft-like steering wheel. Here’s what it’s like to use. https://www.popsci.com/technology/lexus-rz-450e-steering-yoke/ Mon, 13 Mar 2023 22:00:00 +0000 https://www.popsci.com/?p=519261
the steering yoke on a lexus EV
The steering apparatus resembles a yoke on an aircraft. Kristin Shaw

The RZ 450e is Lexus's first electric vehicle—check out its futuristic steering wheel.

The post This new Lexus EV offers an aircraft-like steering wheel. Here’s what it’s like to use. appeared first on Popular Science.

]]>
the steering yoke on a lexus EV
The steering apparatus resembles a yoke on an aircraft. Kristin Shaw

Lexus, Toyota’s luxury arm, just started delivering its first all-electric vehicle to dealerships in the US. Starting at $59,650, the RZ 450e is offered in two flavors—Premium and Luxury—and it will play a starring role in the Lexus lineup as the brand works toward an all-electric product offering by 2035. Highlights for this new car include a steer-by-wire system with a controller that looks like it belongs in a commercial jet; radiant heaters to warm your feet and legs where a glovebox usually sits; and silky-smooth acceleration that distinguishes the RZ from its competitors.  

Here’s what sets it apart and what it’s like behind the yoke—more on that detail in a bit.

Two motors

The public got its first glimpse of the RZ 450e when it was unveiled last spring. The RZ was built with some familiar parts and design elements borrowed from Toyota’s bZ4X, including the “skateboard” platform the Subaru Solterra also uses. Automakers build EVs on these flat surfaces as a painter uses a blank canvas, creating unique structures unencumbered by engine and transmission placement. The lithium-ion battery is distributed under the subfloor of the vehicle, establishing an even weight balance and sports car feel when cornering.  

Effectively, that’s where the resemblance ends. The RZ employs two motors instead of one (as in the bZ4X or Solterra), and combined, the dual-motor setup delivers a total of 308 horsepower. Even more importantly, the RZ is tuned for luxury customers with incredibly smooth acceleration and a quiet cabin enhanced by active sound control, which balances unwanted cabin noise with directed sound frequencies. When testing it recently in Provence, France, my driving partner and I found we could carry on a conversation in normal voices with no problem, even on somewhat bumpy rural roads.

Inside the cabin, Lexus is now using more bio-based sustainable materials like plant-based “polyester,” or simulated suede (Lexus calls it Ultrasuede) replacing the yards of leather from previous model years. The RZ’s 14-inch touchscreen was first seen in the Lexus NX when the brand finally replaced the often-criticized touchpad that held court in the console of many Lexus vehicles. Apple CarPlay and Android Auto are standard, and Wi-Fi connectivity is available for up to five devices. 

A panoramic moonroof is also standard in both trims of the RZ. At the base Premium level, the roof has a special coating called low-e, or low emissivity, to keep the interior cool by blocking some wavelengths of light. Or, you could jump up to the Luxury variant for upgraded dimmable glass that Lexus calls Dynamic Sky. In either case, Lexus opted to remove the motor-driven automatic shade present in many cars with a glass roof. By doing so, the RZ affords more head room and more importantly, it shed 12.8 pounds from the total vehicle weight. 

the lexus RZ 450e electric vehicle
The vehicle is the first EV from Lexus. Kristin Shaw

Steer-by-wire

Also unique to the RZ is an optional steer-by-wire system that Lexus is calling a “game changer.” It’s not the first car to include a U-shaped steering control, typically called a yoke in the aircraft world. A couple of years ago, Tesla dabbled with yoke steering and then offered a retrofit traditional steering wheel for those who didn’t like it. Lexus is not going down that road for good reason: the steering systems are completely different. 

The RZ’s steer-by-wire option is not just a reshaped wheel in the way Tesla attempted. There is no mechanical link between the steering wheel and steering rack with a steer-by-wire setup, as it would be in a car with a traditional steering system. Instead, information is relayed electronically (“by wire”). While a traditional steering wheel can be turned all the way around for a total of about 720 degrees, the steer-by-wire controller tips only 150 degrees in either direction.

“Up until now, there have been other [steer-by-wire systems] but this actually extends the capability by far,” Lexus assistant chief engineer Yushi Higashiyama told PopSci. “Of course, there will be customers who prefer the traditional steering system. The reason why the RZ team took on the challenge of implementing the steer-by-wire system is because that’s also taking on the challenge of the future of electrification and what’s coming next.”

Lexus representatives advised us to take it slow the first time out to get used to the difference in motion, but we found it to be very intuitive and easy to adjust to. Making a 90-degree turn required a gentle twist instead of a hand-over-hand turn, and I thought the steering felt more like a direct connection from my arm motion to the car itself. The RZ is engineered such that the steering ratio adjusts depending on how fast you’re driving, which is intended to feel agile at low speeds and stable at higher speeds.

Before you get too excited about it, know that the steer-by-wire option won’t be available at launch. Lexus has not revealed when it will offer the alternative steering choice; all that the representatives will reveal right now is “not yet.” Incidentally, this feature is called One Motion Grip—OMG, for short—in Europe, and Lexus decided that abbreviation would not play as well in the US market.

Does the RZ offer enough range? 

Because it’s an EV, range anxiety is still a concern for buyers in the US. The Biden administration’s new rollout of standards for EV charging stations, powered by $7.5 billion in federal funding, is aimed at standardizing charging stations across the country. That should help alleviate apprehension, but the market has plenty of room to grow. Still, it may be a surprise to some that the RZ was launched with a range of 220 miles with the standard 18-inch wheels, or 196 miles with the upgraded 20-inch wheels. Bigger wheels mean less rolling resistance and decreased range. 

With a DC fast charger, the RZ’s battery can top up from zero to 80 percent in about 30 minutes. At home with a Level 2 charger, expect it to recharge from zero to 100 percent in roughly 9.5 hours. 

Lexus knows that the RZ’s range is lower than some of its competitors, but Aono says that most RZ buyers will opt for home charging, and that the range is still far above what they need on a daily basis. To entice potential customers who might be skittish about buying an EV, the brand is offering a new benefit called Lexus Reserve. This dealer-led program allows RZ owners to borrow any other available Lexus car from the dealership for free for a total of 30 days over the first three years. That way, if an RZ owner wants to take an extended road trip that exceeds the range, they can borrow a gas-powered GX SUV, for example, to bring the family.

“Americans’ daily average is 40 miles,” Aono says. (According to research from AAA, that number was about 33 in 2021.) “Are you going to be driving 200 miles [in a day]? Probably not. Instead of worrying about that, you can swap your vehicle. We want to make sure our customers are comfortable.”

The post This new Lexus EV offers an aircraft-like steering wheel. Here’s what it’s like to use. appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Emergency officials sound the alarm on electric vehicles dropping AM radio https://www.popsci.com/technology/am-radio-electric-vehicles/ Mon, 13 Mar 2023 20:00:00 +0000 https://www.popsci.com/?p=519227
Backlit radio dial showing the marker running through different stations and frequencies
AM radio is a lifeline during major emergencies, but EVs are quickly dropping support due to interference issues. Deposit Photos

EV propulsion systems cause AM radio interference, but experts maintain easy access to the stations are still vital.

The post Emergency officials sound the alarm on electric vehicles dropping AM radio appeared first on Popular Science.

]]>
Backlit radio dial showing the marker running through different stations and frequencies
AM radio is a lifeline during major emergencies, but EVs are quickly dropping support due to interference issues. Deposit Photos

Amplitude modulation transmissions, better known as AM, have been a mainstay in traditional car radios for decades. But consumers’ adoption of electric vehicles could soon end the avenue for easy-to-access public safety announcements—and emergency response experts are sounding the alarm.

AM radio may be most often associated with rural church pastor sermons, local high school football coverage, and colorful talk radio hosts, but it actually still serves an extremely vital purpose—few sources are as reliable during disasters and emergencies. These messages can travel the farthest on low radio frequencies, and AM operates on some of the lowest: between 525 to 1705 kHz. Time and again, they inform upwards of 47 million Americans of real-time federal and state information for hurricanes, tornadoes, snowstorms, wildfires, and other major public safety incidents.

[Related: Pete Buttigieg on how to improve the deadly track record of US drivers.]

Unfortunately, many current electric vehicles’ propulsion systems generate electromagnetic noise that can interfere with AM signals. Both Tesla and Ford have already dropped AM support in their vehicles, including the 2023 Ford F-150 Lightning, and emergency management professionals are worried the cuts could spread.

As The Wall Street Journal reports, seven former administrators of the Federal Emergency Management Agency (FEMA) sent a letter on Sunday to both Transportation Secretary Pete Buttigieg and several congressional committees, urging legislators to guarantee continued AM radio support in carmakers’ EVs. According to FEMA via WSJ, an estimated 75 radio stations operating on the AM band covers over 90 percent of the entire US population, and are reinforced by backup comms equipment and generators allowing them to continue issuing crucial information in the event of an emergency. Although EVs’ arrival are needed to speed transitioning to a green transportation industry, losing an affordable, easy-to-maintain, and reliable safety tool could create major problems in the future.

[Related: EV companies call out their own weaknesses in new clean energy report.]

Sen. Ed Markey (D, Mass) previously drew attention to the situation in December 2022 via a letter to 20 EV manufacturers, urging them to commit to continue AM availability in their products. The WSJ reports that the Alliance for Automotive Innovation, a group representing major carmakers in the US, pledged a commitment to “maintaining access to safety alerts,” and has been meeting with the National Association of Broadcasters to discuss possible solutions.

For now, at least two automakers—Hyundai and Toyota—have stated they have no plans to remove AM radio support from their EV models, although representatives for the latter company conceded to WSJ that AM radio static “is a challenge” in its electric models.

Correction (March 16, 2023): AM stands for amplitude modulation, not amplitude modification.

The post Emergency officials sound the alarm on electric vehicles dropping AM radio appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Why are Tesla steering wheels falling off? https://www.popsci.com/technology/tesla-model-y-steering-wheel-falls-off/ Sat, 11 Mar 2023 12:00:00 +0000 https://www.popsci.com/?p=518925
The issue involves the Tesla Model Y.
The issue involves the Tesla Model Y. Craventure Media / Unplash

NHTSA is aware of two instances in which a steering wheel has come off a Tesla Y.

The post Why are Tesla steering wheels falling off? appeared first on Popular Science.

]]>
The issue involves the Tesla Model Y.
The issue involves the Tesla Model Y. Craventure Media / Unplash

On January 24, Prerak Patel’s new 2023 Tesla Model Y was delivered. Five days later, according to tweets from Patel’s account, the car’s steering wheel fell off while he was driving. Luckily, no one was hurt. But this wasn’t an isolated incident. According to the National Highway Traffic Safety Administration, the exact same issue has happened to another Model Y. It was enough for the NHTSA to begin looking into the problem, which they estimate could affect over 120,000 cars.

“I wasn’t sure what to do,” he said in an interview with Scripps News. “I was really scared—kids were scared too.”

The exact cause of the issue, according to the NHTSA document, is a manufacturing defect. The retaining bolt, the part of the steering wheel designed to keep it in place and attached to the rest of the steering mechanism, was missing. The report says that both cars received repairs before being delivered that involved removing the steering wheel. 

According to the NHTSA, after being delivered, the steering wheels were held in place by pure friction until they eventually experienced “complete detachment.” In Prerak Patel’s case, that happened while he and his family were on the highway. Luckily, there was no car behind him, and Patel was able to stop safely. After making sure his family was safe, Patel started a thread on Twitter to ask Tesla CEO Elon Musk and the company’s customer support for help. 

The NHTSA investigation is just the latest in a long string of Tesla mishaps. As early as 2018 and 2019, Tesla owners posted videos of poor build quality on their newly delivered cars. Tesla has consistently ranked near the bottom of the Consumer Reports reliability survey, placing second to last in 2021 and 19th out of 24 brands in 2022. But in addition to the manufacturing defects and reliability issues, the so-called self-driving software has also faced regulatory scrutiny.

[Related: Massive new Tesla recall focuses on dangers of self-driving software]

In February, the NHTSA announced a recall of hundreds of thousands of Teslas because of issues in their autopilot system. Tesla’s Full Self-Driving Beta (FSD Beta) system has been linked to fatal accidents. That NHTSA report explains that the FSD Beta was driving unsafely around intersections and ignoring speed limits. The problems were reportedly set to be fixed by an over-the-air software update. 

Tesla isn’t the only automaker to cope with a serious problem like the steering wheel coming off. Not long after Toyota’s first electric SUV, the BZ4X, was released, the company quickly recalled the EVs they had begun delivering because of problems that could lead to the wheels—the ones the vehicle rolls on—completely falling off. After an investigation, Toyota discovered that part of the issue was that a wheel supplier had been manufacturing the wheels to a different specification. Just 260 vehicles were affected. 

The post Why are Tesla steering wheels falling off? appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
How the Formula races plan to power their cars with more sustainable fuel https://www.popsci.com/technology/formula-one-series-fuel-changes/ Fri, 10 Mar 2023 14:51:56 +0000 https://www.popsci.com/?p=518611
Formula 3 cars on the racetrack
A Formula 3 practice session in Spielberg, Austria on July 8, 2022. Jakub Porzycki/NurPhoto via Getty Images

The two feeder series for Formula One aim to switch up their gas to be greener. Here's what to know about these new types of fuels.

The post How the Formula races plan to power their cars with more sustainable fuel appeared first on Popular Science.

]]>
Formula 3 cars on the racetrack
A Formula 3 practice session in Spielberg, Austria on July 8, 2022. Jakub Porzycki/NurPhoto via Getty Images

It’s hard to go faster on the road than in a Formula One car, which can reach top speeds of 220 miles per hour. The so-called pinnacle of motorsport races takes place around the world, from Australia to Sao Paulo. And after an exciting week of preseason testing, the 2023 season got underway at the Bahrain International Circuit on March 5. Reigning world champion Max Verstappen won for Red Bull Racing, with his teammate Sergio Perez in second. There are 20 drivers across 10 teams in F1, and none of the other 18 drivers finished within 30 seconds of Verstappen. Only time will tell if the other teams will be able to catch up.

Below F1 are Formula Two and Formula Three, which are called the feeder series, and function in a similar fashion to baseball’s minor leagues. They’re mostly young drivers attempting to prove their worth by competing against each other for a spot in the big leagues. It’s how most drivers gain one of the 20 seats currently available in F1. (All three F1 rookies this season, Nyck DeVries, Oscar Piastri, and Logan Sargeant, drove at least one season in F2.)

But like any other vehicle with an internal combustion engine, Formula One vehicles burn fossil fuels, which is a problem in a world that must decarbonize to combat climate change. Beyond the 20 Formula One cars racing on tracks every other weekend, there are the massive transportation costs to move the teams and drivers across the globe and the millions of fans traveling to and from the racing circuits.

The Federation Internationale de l’Automobile (FIA), Formula One’s governing body, realizes that. In November 2019, F1 and the FIA announced plans to become fully carbon neutral by the end of 2030, and the plans to make that transition are already underway. 

Formula One currently uses a hybrid fuel that’s 10% biofuel and will make the transition to fully renewable fuels in 2026, meaning all carbon output by the cars will be offset by the production of the fuel. There will be other regulatory changes as well. 

Now, F1 has announced that their feeder series will be following along. Starting with the opening sprint race of the 2023 season at Bahrain last weekend, F2 and F3 cars will use a blend consisting of 55% “Advanced Sustainable Fuel.” And by 2027, according to The Race, the feeder series aim to use a type of sustainable, carbon-captured fuel called e-fuel.

What are sustainable fuels?

“Sustainable fuel” is a catch-all term for a bunch of different alternative ways of producing fuels for planes and cars with the goal of reducing their carbon footprint. It includes biofuels, which recycle organic materials into fuel (this is what F1’s hybrid fuel is) but also carbon-capturing e-fuels that are made by taking carbon from the air, which is what F2 and F3 plan to switch to in 2027. But what all sustainable fuels have in common are their low net carbon emissions.

When it comes to e-fuels created by carbon capture, Nikita Pavlenko, the fuel program lead at the International Council on Clean Transportation, says there are two different sources—getting it directly from the atmosphere, or getting it from smokestacks: “You have a fuel that is pretty close to zero carbon, just produced from renewable electricity and carbon dioxide captured from the air or from a smokestack.” While F1 is allowed to source their carbon from so-called point sources (Pavlenko says this is almost always taken from smokestacks), F2 and F3’s fuel must be fully sourced by direct-air carbon capture technology.

That strict direct-air carbon capturing is what differentiates e-fuel from biofuels and other sustainable power sources, and according to Pavlenko, it’s a very new technology. The F2 and F3 experiments will be one of the first large-scale applications of e-fuel, which has implications for the future of transportation. Ahmad Al-Khowaiter, the chief technology officer at Aramco, who will supply the e-fuel, tells The Race that the FIA understands this is a hard goal to reach because of how underdeveloped carbon capture technologies are but is committed to setting the course. 

Pavlenko says he’s excited that F1 is pursuing e-fuels, because of their very prohibitive cost. “F1 would be one of the use cases that’s best able to support the cost difference,” he says. “It’s a relatively small quantity [in relation to the quantity of non-sustainable fuels] and I assume there’s a high willingness to pay.”

Even better: EVs

There are some concerns, however. The FIA will have to ensure that its e-fuel is made using renewable energy sources. Much like electric cars, producing e-fuel using electricity created by fossil fuels simply moves the source of emissions rather than limits it. In addition, Palvenko says that e-fuel generally has more applications in aviation than on the road, where using electric vehicles is the generally best way to go.

In the past 20 years, F1 has exploded in popularity, thanks to new ownership and a series on Netflix. But as it’s gone global, it’s come under increasing scrutiny for its sustainability, or lack thereof. The FIA is making an effort, however. Even before the fuel changes, F1’s sister electric-only series Formula E launched in 2014. Only time will tell if the two series will eventually merge, but anyone who’s watched Formula E can confirm that the racing is just as electric as the cars are.

The post How the Formula races plan to power their cars with more sustainable fuel appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
How concept cars hint at a dazzling automotive future https://www.popsci.com/technology/concept-cars-explained/ Mon, 06 Mar 2023 23:00:00 +0000 https://www.popsci.com/?p=517640
the
The Genesis X Convertible concept. Kristin Shaw

Some concept cars never become production models, while others are more art than anything else. Here's why car makers create them.

The post How concept cars hint at a dazzling automotive future appeared first on Popular Science.

]]>
the
The Genesis X Convertible concept. Kristin Shaw

Concept cars are designed to be flights of fancy—showpieces that give automakers the chance to put their creativity on display. Quite often, a concept car represents just a blip on a timeline and a blast of buzzy excitement, later shelved in a museum for all of us to marvel at a company’s foresight or folly. 

A concept, by definition, is an idea; in this case, a concept car is an idea that takes the temperature of the public to see how buyers might react to a set of features and designs. Automakers don’t necessarily release a concept every year, and they have to balance the cost of building a vehicle that may or may not ever see the light of the production line. While it’s true that some concepts fade into oblivion, others become successful models that carry many of the same characteristics as the concept. Even those that are wildly futuristic and wacky lay the groundwork for innovations to come. 

Most recently, truck maker Ram announced the 1500 Rev, the production version of its Revolution EV concept. The Revolution (not the Rev) was unveiled at the Consumer Electronics Show in January, with some exciting features, like coach doors (which open at the center like French doors in a home), and a glass roof that adjusts its tint electronically. But when the production version launched at the Chicago Auto Show in February, some expressed disappointment in how much it looked like its gas-powered sibling. Where were the cool removable third-row seats from the concept? Where was the storage tunnel to hold long objects?

To be fair, automakers—especially when they’re large, public companies—are beholden to not just manufacturing and safety regulations but their shareholders. In the case of the Ram 1500 Rev, the company will build the production vehicle on the new all-electric architecture from its parent company Stellantis instead of the one used by the gas version of the 1500 truck.

Otherworldly concepts

There’s a long history of wild concept cars, many of which never became actual production models.

Consider the otherworldly Berlinetta Aerodynamica Tecnica series commissioned by luxury automaker Alfa Romeo in the mid-1950s. These three cars featured unusual, gorgeous bodies that evoke sea creatures in motion. And somehow, all of them survived in remarkable shape and sold as a set for more than $14 million at auction in 2020. These concepts, which never became production vehicles, were more art than realism, unlike recent modern offerings. 

In 2021, Genesis unveiled its X Concept EV, a sleek coupe with wraparound parallel LED lights defining its curves. Last year, it followed up with the X Concept convertible that peeled back the top and showed off more futuristic details. To our great joy, Automotive News reported that the X Convertible recently got the green light for official production. 

Also under the Hyundai Motor Group, Kia introduced a streamlined concept in 2011 that eventually gave way to the Stinger, which was widely lauded by the industry as a game-changer for the Korean manufacturer. Engineered by a former BMW vice president of engineering and sketched out by celebrated former Audi designer, the Stinger was finally launched to the world in 2017. It was taller than the concept and included more buttoned-down design features on the outside, but under the hood the performance was impressive, especially the 365-horsepower GT model. A moment of silence for the now-discontinued Stinger, please. Hope springs eternal, as rumors of an all-electric Stinger have been swirling. 

On the gas-powered side, the raw and rowdy Dodge Viper started life as a concept showcased for the first time at the 1989 Detroit auto show. Using an existing truck engine as its base, the concept evolved over three years into the 1992 Viper RT/10 and delighted fast-car enthusiasts for more than two and a half decades until it was discontinued in 2017. 

the ram rev electric pickup truck
The Rev. Ram

From Revolution to Rev

In the same automotive manufacturing family as the Viper, the Ram 1500 Rev moved quickly from concept to production. And while the Rev may not be exactly the same as the Revolution, it retains the benefit of sharing some parts with the gas-powered Ram 1500 pickup. That will both speed production and keep the cost on the manageable side. Ford did the same thing for its F-150 Lightning, which is purposely built to feel familiar to F-150 customers to avoid alienating its loyal base. 

The 1500 Rev will not be equipped with the removable jump seats from the concept, which could have turned the Ram pickup into the first third-row truck. Ryan Nagode, Ram/SRT’s chief designer for interiors, was inspired to add the track seating when he noticed parents hauling around stadium seats to make hours of sitting on the bleachers at their kids’ sporting events more comfortable. He wondered if something like that could be incorporated into the truck and successfully integrated the idea into the cabin of the Revolution concept. 

“There have been vehicles in the past with jump seats, and I think there is a lot of reality built into these ideas,” Nagode told PopSci at the Concept Garage of the Chicago Auto Show in February. “Obviously, some of these things take a little pushing and pulling with the engineering team, but I think it’s not far-fetched.” 

Alas, those seats won’t be included in the Rev, but the seeds of creativity could feasibly show up sometime in the future. 

The post How concept cars hint at a dazzling automotive future appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Why an old-school auto tech organization is embracing electrification https://www.popsci.com/technology/ev-aftermarket-sema/ Thu, 02 Mar 2023 23:00:00 +0000 https://www.popsci.com/?p=516835
Nissan car and car parts at the SEMA annual event.
Nissan car and car parts at the Specialty Equipment Market Association's annual event. SEMA

As EVs get popular, so do their parts.

The post Why an old-school auto tech organization is embracing electrification appeared first on Popular Science.

]]>
Nissan car and car parts at the SEMA annual event.
Nissan car and car parts at the Specialty Equipment Market Association's annual event. SEMA

You may not have heard of the Speciality Equipment Market Association, but SEMA, as it is known, hosts a massive event annually to showcase the hottest parts and technology in the automotive industry. But with cars changing, and new types of vehicles emerging in the space, the 60-year-old organization debuted SEMA Electrified in 2019 to highlight gas-free machines and parts. Since then, the section has grown from a handful of features to 60 exhibits encompassing 21,000 square feet.

That’s a big leap for an organization that was founded by a bunch of performance equipment makers making a living from gas-guzzling hot rods. And yet it makes sense, says SEMA director of vehicle technology Luis Morales. Everything about the EV market is growing, including the aftermarket for spare parts, accessories, and components. It only makes sense to give these cars their share of the automotive spotlight—even if some of the event’s audience may be anti-electric.

“There are going to be diehard gas or diesel fans who may be hesitant to convert, and that’s fine. We love where we came from,” Morales told PopSci. “Then again, we also want to bring in all the new options that are coming out to the market.”

Encouraging electrification in the aftermarket

Long before the Prius and other electrified cars were even a twinkle in Toyota’s eye, SEMA formed as an alliance of manufacturers in 1963. Then, gas-powered vehicles were in full swing while alternative fuels were a far-off futuristic idea. As hybrid and electric technology started to take off, leaders at SEMA started to notice not just new powertrains but innovations like portable battery packs and full conversion kits.

SEMA vice president of marketing RJ de Vera points to California-based EV West as an example of a company seeing incredible success selling electric car parts, conversion kits that turn a gas-powered car into an EV, and charging accessories. Interest in full conversions is growing as parts for older gas-powered cars become scarce; after all, an electric motor is made up of just a few components, while combustion engines can contain hundreds of parts. 

Conversion kits are a hot aftermarket item, de Vera says, some with wait lists that are two or three years long. EVs don’t require an engine, fuel tank, or fuel pumps, for example, and really just one moving part: the motor. 

[Related: Chevy’s first electrified Corvette, the E-Ray, is a heavyweight built to be quick]

“That seems to be more and more of an interest point for a lot of enthusiasts that are doing a restomod,” de Vera says. Restomod is the process of revamping a classic car with more modern technology.  “They might be thinking it’s going to be such a pain to get the original engine or get gaskets or things that are no longer made, especially for quirkier vehicles. An EV conversion becomes a lot more enticing because the powertrain is so simple.”

Discovering enthusiasm within the EV market

As recently as the 2018 SEMA show, EVs were scarce and aftermarket parts even more so. However, slowly, then all at once, interesting new niche companies emerged. For instance, companies like Juice Technology, which was founded less than a decade ago, are now selling portable EV chargers that weigh just a few pounds and are capable of charging even at temperatures as low as -22 degrees F or as high as 122 degrees Fahrenheit. That’s music to an EV owner’s ears, since temperature fluctuations can affect range and charging in a big way. A portable charger for an EV means that it can be toted around for emergencies like a charging bank for a smartphone; it’s meant to offer a bit of a respite from range anxiety with a quick burst of power to get you to the next charging station. 

“Range anxiety is the reason everybody is focused on getting a car with the most mileage they can get per charge, and that drives up the price of the vehicle, which can make EVs a little bit less attractive to the consumer,” Morales says. Portable chargers could ease that. Plus, it’s kind of an old automotive practice, but just in a slightly newer form. 

“If you look at the overland scene, for example, there are trucks that go camping 30 or 40 miles off road. You’ll notice that they carry their spare fuel, just in case they run low on fuel,” he adds. “[These portable chargers] can get you out of a situation where you need to get to a charging station as opposed to calling a tow truck.”

Whether it’s devices, parts, alternative fuels and powertrains, or new technology, SEMA leadership is striving to embrace it all. Not to mention there’s a lot of room for small startups to think creatively, chip away at current challenges, and grow fast in the space. 

“It’s not just about [internal combustion] vehicles or EV vehicles,” de Vera says. “It’s really about the culture of being a proud vehicle owner and having that passion for automotive culture as well as aftermarket customization and modification. And that’s really our message: to make sure that the love for cars and modifying cars and customizing them stays around for generations.” 

Correction on March 6, 2023: This article has been updated to correctly describe SEMA as the Speciality Equipment Market Association, not the Speed Equipment Manufacturers Association.

The post Why an old-school auto tech organization is embracing electrification appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Why your community’s next solar panel project should be above a parking lot https://www.popsci.com/environment/solar-panels-parking-lots-electric-vehicles/ Fri, 24 Feb 2023 13:00:00 +0000 https://www.popsci.com/?p=514862
A solar canopy installed above parked cars, as seen from the air.
Solar canopies provide electricity and shade, among other benefits. Deposit Photos

They paved paradise? Then put up a solar canopy.

The post Why your community’s next solar panel project should be above a parking lot appeared first on Popular Science.

]]>
A solar canopy installed above parked cars, as seen from the air.
Solar canopies provide electricity and shade, among other benefits. Deposit Photos

Solar canopies built above parking lots are an increasingly common sight around the country—you can already see these installed at university campuses, airports, and lots near commercial office buildings. Because the sun is a renewable resource, these solar canopies reduce greenhouse gas (GHG) emissions associated with energy production. 

The clean energy benefits are clear: A 32-acre solar carport canopy at Rutgers University in New Jersey, for instance, produces about 8.8 megawatts of power, or about $1.2 million in electricity. They also make use of existing space to generate clean energy rather than occupying croplands, arid lands, and grasslands.

There may be other perks to adding solar panels over parking lots, too. Research shows that the benefits of solar canopies can be taken a step further if electric vehicles (EVs) are able to charge right in the parking lot. People can tap into this potential by installing EV chargers in solar carports, which makes charging more accessible for owners and creates a small-scale local energy grid for the community. The expense of installation and other barriers, though, can make deployment challenging. 

EV charging in the carport

A solar carport canopy with 286 solar modules is able to produce about 140 megawatt-hours of energy per year for EV charging, according to a new Scientific Reports study. That’s enough to provide electricity to more than 3,000 vehicles per month if each car parks for an hour. The authors say charging EVs this way can generate 94 percent lower total carbon dioxide emissions than electricity from traditional grid methods. 

To maximize these benefits, smart technology that controls the timing and speed of charging is critical, says Lynn Daniels, manager at RMI’s Carbon-Free Transportation program who was not involved in the study. Smart charging allows users to optimize energy consumption by charging only when prices are cheaper due to low-energy demand or when more renewable energy is available on the grid.

[Related: Solar energy company wants to bolt panels directly into the ground]

EV ownership is growing so swiftly that entire electric grids are at risk of being stressed. If most owners across the US Western region continue to charge their EVs during nighttime, peak electricity demand can increase by up to 25 percent, according to a 2022 Applied Energy study. Accessible daytime charging at work or public charging stations would help address this problem and reduce GHG emissions.

There are ways to maximize emission reductions when smart-charging electric vehicles, according to a recent report from RMI, a nonprofit organization focusing on sustainability. “Our report found that, today, charging one million EVs at the right times is equivalent to taking between 20,000 and 80,000 internal combustion engine vehicles off the road,” says Daniels. If EVs represent 25 percent of vehicles by 2030, “emissions-optimized smart charging,” he adds, would be the equivalent of removing an additional 5.73 million automobiles with combustion engines.

A source of revenue, goodwill, and more

Solar canopies provide vehicles with protection from rain, sleet, hail, and other inclement weather, says Joshua M. Pearce, whose research specializes in solar photovoltaic technology and sustainable development at Western University in Canada. The shade they provide also means car owners may require less cooling from air conditioning at start-up because the vehicle didn’t stay under the sun. But that’s not all they can do.

A solar carport canopy with EV charging can be an opportunity for site owners to earn money if drivers have to pay a fee to charge their cars, says Daniels.

On the other hand, if businesses or large-scale retailers provide EV charging for free, Pearce says, that may develop goodwill with customers. Shoppers might spend more time and money while waiting for their cars to charge, allowing business owners to earn even more profit, he adds. And shopping centers have lots of potentially convertible areas: If Walmart deployed 11.1 gigawatts of solar canopies over its 3,571 Supercenter parking lots in the US, that would provide more than 346,000 solar-powered EV charging stations for 90 percent of Americans living within 15 miles of a store, according to a 2021 estimate.

[Related: What you need to know about converting your home to solar]

Solar canopies also save energy, since about 5 percent of electricity is lost each year as it travels from a power plant to your home or business. If the electricity the solar panels produce is used directly by the buildings they’re connected to or the EVs charging in the parking lots, transmission losses can be reduced, says Pearce.

The widespread deployment of solar canopies across parking lots may be an opportunity to create a small-scale local energy grid as well. The electrical grid is highly vulnerable to natural disasters, intentional physical attacks, and cyberattacks. Solar systems in parking lots can be used as anchors for microgrids—local, autonomous power systems that can remain operational while the main grid is down—that could make communities more resilient, “similar to how the US military uses solar to improve national security,” says Pearce.

Logistics of transforming parking lots

Upfront capital costs are the primary roadblocks to solar-powered carports with EV charging, says Pearce. The physical structure needs to be taller and more robust than a conventional solar farm, requiring more materials like metal and concrete, he adds. EV chargers also cost money, increasing the price even further. Commercial EV charging stations can cost around $2,500 to $40,000 for a single port. An installation often requires permits and approval from local authorities or inspectors, all of which are additional expenses and barriers to faster deployment.

The design of the solar array may be a challenge, too. “There’s a trade-off between right-sizing the solar array for current EV charging needs versus anticipated future demand and the costs of the solar array,” says Daniels. “The solar array design and location on the site can create significant variability in installation complexity and project costs.”

Daniels recommends raising awareness about the currently-available tax credits and other incentives, such as the federal solar tax credit that can deduct 30 percent of total commercial solar installation costs. There is a tax credit of 6 percent (with a maximum credit of $100,000 per unit) on commercial charging equipment as well, given that it is placed in a low-income community.

When it comes to new regulations, Pearce suggests that policymakers begin with a small step, like mandating solar-powered carports with EV charging capabilities for new surface parking or government-owned lots. After that, requirements for other locations like public universities could follow, he adds.

States or municipalities could also offer incentives other than the existing federal solar tax credit. To encourage state agencies, government offices, businesses, and nonprofits to install EV-charging solar canopies over parking lots, the Maryland Energy Administration’s Solar Canopy and Dual Use Technology Grant Program is offering grants. In 2019, one of these grants enabled IKEA to install a 1.5-megawatt solar canopy with EV charging stations at its Baltimore store.

Moreover, offering low- or no-interest loans to small- and medium-sized businesses can help them “keep up with the big firms investing millions in solar now simply to make money,” says Pearce. In general, if the federal government hopes to break one of the biggest barriers to the installation of solar canopies with EV charging capabilities, reducing upfront costs would be the key.

The post Why your community’s next solar panel project should be above a parking lot appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
The rise of green hydrogen in Latin America https://www.popsci.com/environment/green-hydrogen-latin-america/ Wed, 22 Feb 2023 02:00:00 +0000 https://www.popsci.com/?p=513904
Electric Vehicles photo
Knowable Magazine

In anticipation of future demand, several projects are underway in the region to produce this clean energy source.

The post The rise of green hydrogen in Latin America appeared first on Popular Science.

]]>
Electric Vehicles photo
Knowable Magazine

This article was originally featured in Knowable.

Franklin Chang-Díaz gets into his car, turns on the radio and hears the news about another increase in the price of gasoline. But he sets off knowing that his trip won’t be any more expensive: His tank is filled with hydrogen. His car takes that element and combines it with oxygen in a fuel cell that works like a small power plant, creating energy — which goes into a battery to power the car — and water vapor. Not only will Chang-Díaz’s trip cost no more than it did yesterday, it will also pollute far less than a traditional gasoline-powered car would.

Chang-Díaz would like to have a public hydrogen station nearby whenever he needs to fill his tank, but that isn’t possible yet, either in his native Costa Rica or in any other Latin American country. He ends up instead at the hydrogen station he built himself, as part of a project aimed at demonstrating that hydrogen generated with renewable energy sources — green hydrogen — is the present, not the future.

A physicist, former NASA astronaut and the CEO of Ad Astra Rocket Company, Chang-Díaz has a clear vision. Green hydrogen, he believes, is a fundamental player in lowering emissions from transportation and converting regions that import fossil fuels — such as his small Central American country — into exporters of clean energy, key to avoiding the catastrophic effects of global warming.

According to data from the Inter-American Development Bank, the most polluting sectors in Latin America to which clean hydrogen technology could be applied are transportation (which generates 40 percent of the region’s CO2 emissions) and electricity and energy (36 percent of emissions). And Chang-Díaz is not alone in his belief in the promise. Large-scale hydrogen transportation will be part of the future, says Nilay Shah, a chemical engineer at Imperial College London. “By 2050, hydrogen could deliver 18 percent of the global energy supply … 28 percent of which would be destined for the transport sector,” he and his colleagues note in an article on the application of hydrogen in mobility technologies in the 2022 Annual Review of Chemical and Biomolecular Engineering.

But for green hydrogen to become an important player in the world’s energy resources, the technologies for obtaining it will need to be developed on a large scale. Latin America wants to be part of this future and is already preparing, with projects throughout the region.

Franklin Chang-Díaz charges his car with hydrogen at his company’s fueling station in Guanacaste, Costa Rica. The hydrogen is generated with renewable electricity, so it is considered clean or green.
CREDIT: COURTESY OF AD ASTRA ROCKET COMPANY

Not all hydrogen is the same

Hydrogen is the lightest chemical element: Its nucleus has only one proton, orbited by an electron. It’s also the most common: Up to 90 percent of the atoms in the universe are believed to be hydrogen atoms. In its gaseous state (H 2), it is tasteless, colorless and odorless. In the terrestrial environment, it is usually found in more complex compounds, such as two hydrogen atoms bonded to one oxygen atom to form a water molecule (H 2O), or four hydrogen atoms bonded to one carbon atom to form methane (CH 4). If we need the hydrogen atoms alone, we must uncouple them from these compounds.

The use of hydrogen as an energy source is not new. For decades, NASA mixed H2 gas with oxygen to generate the energy needed to lift hundreds of tons and send its shuttles into space. The US Department of Energy lists it as a safer fuel than fossil fuels because it is non-toxic and dissipates quickly in the event of a leak, since it is lighter than air.

At present, hydrogen as an energy source is mainly used in the production of petroleum derivatives, steel, ammonia and methanol. According to data from the International Energy Agency (IEA), in 2020 the world’s population consumed about 90 million tons of hydrogen — equivalent to only 2.5 percent of global energy consumption. Latin America uses only 5 percent of this hydrogen, mainly in countries such as Trinidad and Tobago, Mexico, Brazil, Argentina, Venezuela, Colombia and Chile. It is mostly dirty hydrogen, which pollutes the planet due to the processes used to obtain it.

Electric Vehicles photo
Green hydrogen is produced using energy from renewable sources — such as hydroelectric, solar or wind power. Through a process known as electrolysis, this clean electricity separates water into its two constituent elements: oxygen and hydrogen. The hydrogen is then stored and transported. It can be used directly in industrial processes; be combined with other elements to create synthetic fuels; or be mixed with oxygen to generate electricity again, as is the case with hydrogen fuel-cell cars.

Depending on how it is derived, hydrogen can be classified as gray, blue, green — or even black. Gray hydrogen is generated using fossil fuels — natural gas especially, in the case of Latin America. In a process called steam reforming, carbon monoxide (CO) and water vapor (H2O) are subjected to high temperatures, moderate pressure and a catalyst, producing carbon dioxide (CO 2) and hydrogen (H 2). If coal is used instead of gas to generate the heat necessary for steam reforming, the hydrogen is then considered black — the worst of all, from an environmental point of view.

Blue hydrogen uses gas or coal in the same steam reforming process, but in this case 80 percent to 90 percent of the carbon emissions end up underground through a process called industrial carbon capture and storage (CSS). Finally, green hydrogen — also called clean hydrogen — uses electrical energy generated by renewable sources, such as solar and wind power, to separate the water molecule into its two elements, hydrogen and oxygen, by means of an anode and a cathode in a process called electrolysis.

Currently, less than 0.4 percent of the hydrogen utilized in Latin America is green; the rest is linked to fossil fuels. In fact, in 2019, hydrogen production for the region required more natural gas than all of the gas consumed in Chile, a country with 19 million inhabitants. And it generated more polluting emissions than those produced in a year by all the cars in Colombia, a nation with some 7 million vehicles.

Globally, 4 percent of hydrogen production is already the result of electrolysis, but the remaining 96 percent still requires gas, coal or petroleum derivatives.

Toward green hydrogen

With the goal of producing more and more green hydrogen, several projects on different scales are taking shape in Latin America.

  • The Brazilian company Unigel plans to inaugurate a $120 million plant in 2023, which will produce 10,000 tons per year of green hydrogen — the equivalent of 60 megawatts (MW) — in its first stage.
  • Sener Ingeniería Mexico announced in August 2022 the creation of the first of a series of small plants, of about 2.5 MW.
  • Chile, for its part, is already seeing some of the fruits of its National Green Hydrogen Strategy, launched in 2020. This South American country says it plans to “conquer global markets” in 2030, mainly Europe and China, where it aims to send 72 percent of its production. The port of entry to Germany will be Hamburg. “With its great potential for green hydrogen production, Chile is on the verge of becoming an exporter of global magnitude,” said the mayor of Hamburg, Peter Tschenscher, during the signing of a cooperation agreement in September 2022.
  • Uruguay launched the Green Hydrogen Sector Fund, with $10 million non-reimbursable funding from the government to finance projects. In August 2022, nine companies won a spot, some with names such as “Green H 2 Production for Forest Transport” and “Palos Blancos Project: green hydrogen, ammonia and fertilizer production plant with wind and solar photovoltaic renewable energy.”
  • And in Costa Rica, Chang-Díaz is helping lead the way to add green hydrogen to the country’s portfolio of clean energy sources (about 99 percent of electricity in Costa Rica is generated through sources such as the sun, wind and water from dams). In July 2022, Chang-Díaz demonstrated on social media how he fueled his car, at a prototype station, with green hydrogen produced in his own country.

While some Latin American countries may benefit from the production of green hydrogen, others will benefit from large-scale consumption of the clean energy source. For example, Trinidad and Tobago, which consumes 40 percent of the region’s hydrogen for its oil refining processes, emits 12.3 metric tons of carbon per person per year (by comparison, Costa Rica emits 1.6 metric tons per capita per year, according to 2019 World Bank data). If Trinidad and Tobago used green hydrogen in its processes instead of gray hydrogen, its carbon footprint would be significantly reduced.

Electric Vehicles photo
Although hydrogen can be produced with renewable energy throughout Latin America, in certain countries  — such as Mexico, Chile, Argentina, Peru, Bolivia and Brazil — the availability of solar, wind or hydroelectric power will make the process more cost-effective.

Other countries are being creative and are not yet focusing on either production or consumption of green hydrogen. Panama, for example, seeks to become a storage and commercialization node for the element, like the air and maritime transport hub it already is. As part of this national energy transformation plan, called Green Hydrogen Roadmap, the authorities of this country signed a memorandum of understanding with Siemens Energy. Panama also has plans to produce some of its own green hydrogen eventually: The Ciudad Dorada Biorefinery, expected to begin construction this year, will have the capacity to generate 405,000 metric tons.

“Green hydrogen technology is developing worldwide and by 2030 Latin America will be the third region in the world with the most projects, after Europe and Australia,” says José Miguel Bermúdez, chemical engineer and energy technology analyst at the IEA.

For Shah, the reason for this growing interest is clear: Many Latin American countries have the potential to generate more clean energy than they need. “Let’s take Chile, for example,” he says. “The amount of potential for renewable electricity is probably 10 times more than the amount of electricity you need in the country.” Exporting that clean energy from Chile or Costa Rica in the form of electricity over long distances is complicated and expensive. But using it to create hydrogen and transport it in tanks to practically any place in the world is realistic, he says, although it will require investments — just as investments in oil tankers and gas pipelines were once needed.

But, Shah adds, green hydrogen could also be transported with existing infrastructure if it is used to create popular products, such as ammonia (NH3, a nitrogen atom bonded to three hydrogen atoms, a compound widely used in agriculture) or synthetic fuels.

Challenges to be solved

After the production and distribution of green hydrogen comes its myriad uses. To power car batteries, it’s combined with oxygen in a fuel cell and generates water vapor and energy. To manufacture iron, hydrogen is used to transform one molecule of iron oxide (Fe2O 3) into two molecules of iron (Fe) and three molecules of water (H 2O) at high temperatures — fossil fuels are currently used for this purpose. Processing this iron further, with more energy, produces steel.

The manufacture of cement also requires high temperatures, currently generated with fossil fuels: The IEA indicates that as much as 67 percent of hydrogen demand in 2030 could come from this industry. In addition, hydrogen combined with carbon in the Fischer-Tropsch process generates synthetic fuels, which are cleaner than traditional fossil fuels. Aircraft are already allowed to fly on up to 50 percent synthetic kerosene.

Some 50,000 hydrogen vehicles are already on the road worldwide, Bermúdez adds. Projections are that the number will soon skyrocket — China alone expects to have 1 million on its streets by 2035 — but experts agree that, in the short or medium term, hydrogen will not completely replace the most polluting fuels; instead, it will be one alternative in a matrix of different options, such as traditional electric cars or solar-powered airplanes. However, the experts also agree that it will be a significant option, not a marginal one.

“There will be a series of technologies and areas of opportunity that do not have to be specifically the same in all the countries of our region,” says Andrés González Garay, a process engineer at the chemical company BASF and a coauthor of the article on hydrogen production and its applications to mobility in the Annual Review of Chemical and Biomolecular Engineering. “It is also true that hydrogen, although it can be applied in a lot of areas, will not make sense in all of them, and it will depend a lot on our political, social and economic systems.”

Electric Vehicles photo
The International Energy Agency expects Latin America to become one of the world’s most important clean hydrogen export zones by 2030. Chile is one of the countries with the greatest potential and already has some exports of this product.

To arrive at the more environmentally friendly scenario that green hydrogen offers, its production should be increased as soon as possible and, at the same time, its consumption needs to be encouraged, Shah says. “Global hydrogen production is expected to grow six to 10 times between now and 2050,” González Garay says, and the increase is projected to be mainly in clean hydrogen.

The role of governments will be pivotal, the scientists say. “If governments become the first users of hydrogen — for their buildings, for their vehicle fleets, for their other operations, for power generation — they become the customer. Then they can create the supply chain of hydrogen and give confidence to the producers that there is a market,” Shah says.

Adds Bermúdez: “The public sector needs to put the regulations and support programs in place to accelerate the private sector. Public policies are needed to force demand for green hydrogen…. If Latin America does not position itself well and start producing and closing agreements, it runs the risk of being left behind.”

Chang-Díaz, for his part, fears that countries like Costa Rica, despite producing almost all its electricity through clean renewable sources, risk moving too late to take advantage of the wave of green hydrogen that is already beginning to rise. In December 2022 he participated as a speaker at an international meeting held in San José, the capital of his country. But at the same time, a few kilometers away, the bill to support the green hydrogen sector, which has been under discussion for months, has not advanced in the Legislative Assembly.

So, at least for now, Chang-Díaz will remain the only one in his country who can travel in a car that uses green hydrogen as fuel.

This article originally appeared in Knowable Magazine, an independent journalistic endeavor from Annual Reviews. Sign up for the newsletter.

The post The rise of green hydrogen in Latin America appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Massive new Tesla recall focuses on dangers of self-driving software https://www.popsci.com/technology/tesla-recalls-vehicles-due-to-full-self-driving-danger/ Thu, 16 Feb 2023 22:59:08 +0000 https://www.popsci.com/?p=512982
Tesla Model S red electric car close-up of hood
The recall affects 362,758 vehicles with "full self-driving" software. Deposit Photos

More than 360,000 vehicles are affected.

The post Massive new Tesla recall focuses on dangers of self-driving software appeared first on Popular Science.

]]>
Tesla Model S red electric car close-up of hood
The recall affects 362,758 vehicles with "full self-driving" software. Deposit Photos

Tesla is carrying out a recall because of issues with its Full Self-Driving (FSD) Beta, according to an announcement posted on the National Highway Traffic Safety Administration (NHTSA) website, which cites the software’s potential to cause crashes. The supposed fix will come in the form of a free software update issued over the air.

According to the announcement, certain Teslas with the FSD Beta engaged could “act unsafe around intersections, such as traveling straight through an intersection while in a turn-only lane, entering a stop sign-controlled intersection without coming to a complete stop, or proceeding into an intersection during a steady yellow traffic signal without due caution.” The software also could encounter problems with “changes in posted speed limits.” The recall affects all 2016-2023 Model S and Model X vehicles, 2017-2023 Model 3s, and 2020-2023 Model Y vehicles utilizing FSD Beta. All told, as many as 362,758 could be affected.

Tesla’s autopilot technology employs machine learning and cameras to aid in steering, lane changes, braking, and speed changes. Alleged incidents, some fatal, involving cars with versions of the software have been reported over the years, while the electric vehicle maker continued to offer public testing subscriptions to its customers.

[Related: Tesla is under federal investigation over autopilot claims.]

At the end of 2021, over 475,000 vehicles faced a recall due to front trunk hood and rearview camera issues. As CNBC reports, Tesla has never disclosed the exact number of vehicles using FSD Beta, but CEO Elon Musk said in the company’s most recent earnings call that it had been deployed to “roughly 400,000 customers in North America.” He added during the call that, “This is a huge milestone for autonomy as FSD Beta is the only way any consumer can actually test the latest AI-powered autonomy.” Musk tweeted today contesting the word “recall,” while Tesla plans to release a free over-the-air (OTA) software update.

[Related: YouTube pulls video of Tesla fan testing autopilot on kid.]

In October 2022, news leaked that the Department of Justice was conducting an ongoing investigation into alleged misleading and false claims regarding its “Autopilot” systems, which still explicitly requires a human driver behind the wheel at all times. As recently as last fall, Musk said FSD mode was close to being able to drive people “to your work, your friend’s house, to the grocery store without you touching the wheel.” Tesla also faces investigations from the state of California over similar statements. Last month, the NHTSA said it was “working really fast” on another “extensive” Tesla Autopilot probe that could affect more than 830,000 vehicles.

Secretary of Transportation Pete Buttigieg has called terms like Autopilot “extremely problematic.”

The post Massive new Tesla recall focuses on dangers of self-driving software appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
EV companies call out their own weaknesses in new clean energy report https://www.popsci.com/technology/rivian-polestar-climate-report/ Fri, 10 Feb 2023 19:00:00 +0000 https://www.popsci.com/?p=511307
Four factory smoke stacks billowing fumes against brown cloudy backdrop
Rivian and Polestar funded a new study on automakers' role in tackling climate change. Deposit Photos

Rivian and Polestar team up for a new report laying out the monumental tasks ahead for the auto industry to address its role in climate change.

The post EV companies call out their own weaknesses in new clean energy report appeared first on Popular Science.

]]>
Four factory smoke stacks billowing fumes against brown cloudy backdrop
Rivian and Polestar funded a new study on automakers' role in tackling climate change. Deposit Photos

Two up-and-coming electric vehicle companies, Polestar and Rivian, aren’t mincing words about their industry’s shortcomings. In a new report commissioned by the automakers from global management consulting firm Kearney, experts warn the EV economy remains “far off track” from doing its part to meet targets set by the Paris Climate Agreement. Signed by 196 countries in 2015, the Paris Agreement aims to keep the world’s temperature from increasing more than 1.5 degrees Celsius above pre-industrial levels.

The team-up between two technically competing carmakers is outside the norm, but as Ellen Broomé, a spokesperson for Polestar, explained to The Verge on Thursday, the report’s “shocking and sobering” data confirmed their suspicions that “everything was moving too slow.”

[Related: A new solution could keep old wind turbine blades out of landfills.]

“We have both been frustrated by the lack of an honest, data- and science-led pathway for the car industry to remain in line with [Paris Agreement’s] 1.5-degree limit,” they added.

As the new report explains, despite the rising interest in EVs alongside automakers’ commitments to retiring internal combustion engines, companies’ primary focus on eliminating greenhouse gas tailpipe emissions is simply not enough. Instead, Kearney’s conclusions urge businesses to rapidly increase investments in renewable energy power grids, as well as reducing emissions generated across their entire supply chains. Polestar and Rivian concede carmakers haven’t been traditionally involved directly within these separate industries, but urge rethinking the approach to such topics in order to meet climate change goals. Potential avenues include vehicle companies investing more heavily in clean energy companies, or starting their own projects in the field.

[Related: Honda’s newest Accord hybrid is a sleek, brawny beast.]

One of the main areas requiring improvement is battery sourcing and construction, by far the largest source of pollution within EV production. Automakers must simultaneously focus on vastly reducing emissions, the authors of the report argue, alongside revising what materials are used in the batteries themselves.

The report’s conclusions depict an extremely tall order, one that will require unprecedented cooperation between automakers across the board to accomplish the already lofty goals. “We need to come together to create a plan to tackle the challenge and deliver on that plan as quickly as possible,” the paper’s authors urged.

The post EV companies call out their own weaknesses in new clean energy report appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
This Antarctic EV goes where other electric vehicles can’t tread https://www.popsci.com/technology/venturi-antarctic-ev-repairs/ Sat, 04 Feb 2023 12:01:00 +0000 https://www.popsci.com/?p=509889
The Venturi Antarctica electric vehicle pulls a sledge through the snow
The Venturi Antarctica helps scientists on the frozen continent get around without emissions. Venturi

A machine built for South Pole conditions faces another engineering challenge: climate change.

The post This Antarctic EV goes where other electric vehicles can’t tread appeared first on Popular Science.

]]>
The Venturi Antarctica electric vehicle pulls a sledge through the snow
The Venturi Antarctica helps scientists on the frozen continent get around without emissions. Venturi

In 2009, Prince Albert II of Monaco asked experimental vehicle manufacturer Venturi to take a crack at designing an electric vehicle that could handle the harsh cold of Antarctica. Over the next 12 years, the company went to work. After testing out two full prototypes, the company pulled off a final product launch on June 1, 2021. The Venturi Antarctica, as the vehicle is called, has been transporting scientists and lab equipment in eastern Antarctica since December 2021.

Designing an electric vehicle for the harsh climate of Antarctica is no easy feat. The battery and other components have to be able to tolerate the frigid Antarctic temperatures, and there needs to be space to store research equipment and transport the researchers comfortably. Venturi has experience with experimental electric vehicles going back to 2000, and has competed in Formula E, the top-tier electric car racing competition in the world, since its inaugural season in 2014. 

[Related: Boaty McBoatface’s new mission is more serious than its name]

According to Venturi, scientists based at the Belgian Princess Elizabeth research station have driven the Antarctica EV over 500 kilometers (310 miles) in just one summer of use. The vehicle has a range of 50 kilometers (31 miles), with space for a second battery if the scientists need more range. However, its range can vary depending on how compact the snow it has to drive on is, and scientists started noticing some problems. 

As climate change has affected global temperatures, Antarctica has warmed. Average temperatures on the icy continent ranges from a frigid -50 degrees Celsius (-58 F) inland to around -10 C (14 F) on the coasts, and the vehicle, designed for the extra cold, needed tweaks to tolerate the relative warmth. Venturi instructed researchers to limit trips to 40 kilometers (25 miles), and is beginning work on modifications to restore the vehicle to its true glory. 

Since Antarctica is covered almost entirely in snow, the Antarctica EV uses a continuous track system, just like you’d expect on a snowcat or a snowmobile. The treads spread the 5,500 pounds of vehicle over its entire surface area, preventing the Antarctica EV from sinking into the snow like a wheeled vehicle would. But the warmer temperatures have caused the snow to stick to the sprockets that drive the treads, creating unwanted vibrations that could further damage the vehicle. The company has since redesigned and replaced the sprockets in an attempt to keep the vehicle in working order.

Increasing temperatures also made it more likely for the cabin, which is packed with electronics and exposed to the sun, to overheat. To balance that out, Venturi has had to install a new ventilation system for a more comfortable riding experience. They also made a new cooling system for the power electronic systems themselves.

Venturi announced on January 24 that their next set of improvements will be focused on redesigning the treads and increasing the vehicle’s range in Antarctica. Barring any other unforeseen circumstances, these should allow the vehicle to putter around the ice and snow of the southern continent more and more in the years to come.

The post This Antarctic EV goes where other electric vehicles can’t tread appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Pete Buttigieg on how to improve the deadly track record of US drivers https://www.popsci.com/technology/pete-buttigieg-interview-traffic-deaths/ Fri, 03 Feb 2023 14:00:00 +0000 https://www.popsci.com/?p=509537
In 2021, there were 42,915 traffic fatalities in the US. The number hadn't been that high since 2005.
In 2021, there were 42,915 traffic fatalities in the US. The number hadn't been that high since 2005. Photo by Chris Linnett on Unsplash

The stats are grim. What can we do about all the traffic fatalities in America?

The post Pete Buttigieg on how to improve the deadly track record of US drivers appeared first on Popular Science.

]]>
In 2021, there were 42,915 traffic fatalities in the US. The number hadn't been that high since 2005.
In 2021, there were 42,915 traffic fatalities in the US. The number hadn't been that high since 2005. Photo by Chris Linnett on Unsplash

Something remarkable has happened in Hoboken, New Jersey over the past six years: No one has died in a traffic crash since early January, 2017

But Hoboken, with a population of some 60,000 people, unfortunately is not representative of the United States as a whole, where traffic deaths have risen since the beginning of the pandemic. In 2020, more than 38,800 people died because of traffic crashes, a nearly 7 percent increase from the year before. And then they climbed again in 2021, up by more than 10 percent compared to 2020 and hitting nearly 43,000. 

Secretary of Transportation Pete Buttigieg draws a comparison between this problem and casualties from firearms. “Most Americans know that there’s a difference between the rate of gun death in the US and in most developed countries. I’m not sure most Americans know that something similar is going on with roadway deaths,” Buttigieg tells PopSci. “Not the same disparity—but a comparable pattern, where a lot of other places that also have cars and drivers and advanced economies don’t have the level of carnage that we do.” 

That carnage has continued into 2022, although initial data from the first nine months of that year suggest that traffic deaths may have declined a tiny amount compared to the same time frame in 2021. But pedestrian and cyclist deaths still continued to climb last year, as they have throughout the pandemic—vulnerable people on the roads are being killed by vehicles, and in climbing numbers. 

Here’s why experts think it’s been happening, how technology can help (even as it also causes problems), and what to know about the simple changes that Hoboken has made to try to make its streets safer. 

Why did traffic deaths spike as the pandemic began?

“One prevailing theory is that you saw less traffic, higher speeds, and the crashes that happened were more likely to be fatal,” Buttigieg says. 

That’s a big piece of the equation, says Leah Shahum, the director of the Vision Zero Network, a nonprofit that aims to help connect communities with one another to fight traffic deaths. Another underlying issue is that “we’ve supersized our roads,” she says, allowing people to speed when congestion is absent. “And then secondly, our vehicles are getting a lot bigger.” 

Buttigieg also notes that in general, the tech inside some vehicles right now acts as a double-edged sword. 

He mentions in-car systems where the vehicle might track your eyes to see if you’re paying attention while cruise control is engaged. “What that means is that we have some technologies that are being developed to protect you from over-reliance on some of the other technologies that are being developed,” he says. “And it just shows you what a complicated and sensitive time we’re in.” 

Complicating the landscape are terms like “Autopilot,” the Tesla feature whose name alone implies that the vehicle is on a type of autopilot, like an aircraft. “There is no commercially available technology that doesn’t require that you be paying attention and driving,” Buttigieg says. “Words like ‘autopilot’ I think are extremely problematic.” 

[Related: What can ‘smart intersections’ do for a city? Chattanooga aims to find out.]

Tesla is in the crosshairs of the Justice Department and reportedly the Securities and Exchange Commission, as well as National Highway Traffic Safety Administration, a part of the DOT. (Meanwhile, an option from Mercedes-Benz called Drive Pilot achieves what’s known as Level 3 autonomy, but is only legal in Nevada and comes with a speed restriction.) 

“I think we also need to recognize the responsibility that exists outside of just the technical design of the vehicle, to how you market, how you talk about it, and what expectations you create for drivers,” Buttigieg says.

How do you protect against ‘murderous’ human drivers? 

Advanced driver assistance tech can be a benefit, too, he argues. “I think we need to be very thoughtful about emerging technologies because they hold huge promise,” Buttigieg adds. “The track record of human drivers is borderline murderous.” 

He says that there is potential for in-vehicle tech to help improve the situation, arguing that it could “represent a major safety” improvement. But there are also low-tech changes that cities can make to their streetscape that can protect people from driving machines made of metal, glass, and plastic. 

Hoboken holds clues. The current mayor, Ravinder Bhalla, says that when he was a council member, an 89-year-old woman, Agnes Acerra, was killed in 2015 while crossing Washington Street after being struck by a vehicle. Bhalla attended Acerra’s funeral and wake. “That’s when it really hit home for me,” he says. “In the years that have passed, we’ve made multiple improvements that could have avoided that crash.” 

Curb extensions.
These curb extensions also have plants to absorb rain water. City of Hoboken

One of those, he says, are curb extensions. A curb extension, as the name implies, extends the sidewalk space out into the street to about the width of a car. “It reduces the distance that someone like Agnes would have to cross the street, thereby reducing the possibility of being hit by a vehicle,” Bhalla says. “It increases the visibility for both pedestrians and drivers” because the curb extension makes it harder for a vehicle to park right next to the crosswalk. 

They’ve also reduced the speed limit to 20 mph in the city. Shahum, of the Vision Zero Network, says that changes like these are important. “Most importantly, at the local level at least, it really is about redesigning streets—it really is about slowing drivers down so that there’s more safe, comfortable, shared space,” she says. 

[Related: It’s an especially dangerous time to be a pedestrian in America]

Bhalla says that they have made a tweak to the way the signals work when pedestrians cross, too. “Pedestrians have 30 seconds to cross Washington Street,” he says. Baked into that time is a “pedestrian-only interval” that lasts seven seconds. “All traffic lights are red, and only pedestrians can cross the street” during that time, he says. 

Bhalla’s advice to other cities is to move both slowly and quickly, depending on the issue. The slow approach refers to routine street maintenance, and using that moment to make safety tweaks. “We do that on an incremental, block-by-block basis, and I think over time, in the aggregate, the data shows positive results,” he says. The fast approach refers to acting when something urgently needs a change, like examining areas with high accidents. 

It’s not copy-paste from place to place, though. “Find out what works well in your own community, and do those things as well as possible,” he says. 

Electric Vehicles photo
City of Hoboken

Can you change culture? 

Pedestrian deaths in the first three-quarters of 2022 climbed by 2 percent, and cyclists deaths by 8 percent, even as the total traffic fatalities declined a tiny bit. In 2020, more than 6,500 pedestrians were killed because of traffic crashes, and some groups are much more vulnerable than others: the DOT reports in the Safety Strategy they released last year that people who are American Indian or Alaskan Native, Black or African American, Hispanic or Latino, and Native Hawaiian or other Pacific Islanders are all more likely to be killed as pedestrians. 

“There are a lot of measures that we can take that make a difference” with the pedestrian and cyclist fatality problem, Buttigieg says. That involves “making sure that we have more separated bike lanes, making sure that we have better lighting—basically reducing the frequency and the severity of situations where a pedestrian or bike and a vehicle can cross each other’s paths to begin with.”

[Related: US pedestrian deaths are reaching a new high]

“Part of it also I think though, beyond the physics of it, is frankly the culture—making sure that drivers are aware,” he adds. 

So how does one go about changing culture, and trying to get drivers to pay attention? He points out that street engineering can play a role in how people act. “We know that if the road is designed a certain way, it can force you to pay attention at a complex intersection, or nudge you toward driving at a safe speed,” he says, “and so these are among the things that I’m eager to see developed through the hundreds of planning grants that we’re supporting in different communities around the country.” 

Those grants total hundreds of millions of dollars and were announced on Wednesday. For example, they include $9 million for a “Complete Streets Project” on La Brea Avenue in Los Angeles that will “include new pedestrian crosswalks and signals.” On the other coast, a project in Boston is also getting $9 million for changes like “raised crosswalks, pedestrian island refuges, street right-sizing, curb extensions,” and more. Here’s the list

The cultural issue is on Bhalla’s mind, too. “There is a certain culture and cultural adaptation that’s occurring in Hoboken,” he says. “We’ve come to realize that everyone is a pedestrian at some point, even if you’re a motorist.” After all, he says, drivers have to walk to their cars to get in them in the first place. 

The post Pete Buttigieg on how to improve the deadly track record of US drivers appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Lightning-fast Lamborghini is slowly shifting gears towards electrification https://www.popsci.com/technology/lamborghini-electrification-plans/ Tue, 31 Jan 2023 20:30:25 +0000 https://www.popsci.com/?p=508908
At Daytona International Speedway, one of the teams, the Iron Dames, piloted a hot pink Huracán.
At Daytona International Speedway, one of the teams, the Iron Dames, piloted a hot pink Huracán. Kristin Shaw

Here's what we know about the Italian automaker's plans for its tech in the future.

The post Lightning-fast Lamborghini is slowly shifting gears towards electrification appeared first on Popular Science.

]]>
At Daytona International Speedway, one of the teams, the Iron Dames, piloted a hot pink Huracán.
At Daytona International Speedway, one of the teams, the Iron Dames, piloted a hot pink Huracán. Kristin Shaw

The name Lamborghini evokes powerful acceleration and large engines, with oodles of cylinders and a sound to match. But the supercar builder isn’t blind to the electrification movement. And while Lamborghini is not yet phasing out its thundering herd of combustion engines, the brand is moving towards a compromise that feels true to itself: internal combustion plus an electric motor. 

In 2019, Italy’s Raging Bull automaker teased its future with a hybrid, the V12 Sián FKP 37. The vehicle went above and beyond with 819 horsepower, the company’s most powerful model ever. However, with a $3.5 million price tag, it wasn’t made for the masses (nor even an average Lamborghini buyer). Only 63 were made in honor of the year Lamborghini was founded, and collectors snapped them up quickly. The Sián, which means “lightning” in Italian, contains a 48-volt electric motor that adds 34 horsepower to V12; it was made to showcase the brand’s capabilities and show a hint of what’s to come. Here’s what’s next.

Vitamin V12 deficient

The leadership team is making it clear that it’s not the right time for the Raging Bull to go all electric. All in due time, Lamborghini CEO Stephan Winkelmann says.

“If you would have asked me five or six years ago, I would have been convinced that hybridization would happen, but I’d have my doubts on the execution and acceptance,” Winkelmann told PopSci. “Now, it’s a generational issue. We have a lot of young fans who are telling us we’re on the right path in terms of sustainability.”

While an all-electric vehicle is slated to be revealed in 2028, Lamborghini is first launching a hybrid-powertrain successor to its top-of-the-line Lamborghini Aventador sports car before the end of Q1 2023. 

[Related: Behind the wheel of the thunderous Lamborghini Aventador]

“We have to take care that we have this kind of emotional attachment, but always the technology will find a way,” Lamborghini chief technical officer Rouven Mohr told PopSci. “Even if I personally like the combustion [engine], it would be a mistake to think that there will be no tipping point.”

Mohr says they are not following the engine-downsizing trend, pairing a smaller powerplant with an electric motor to compensate for power. The plan is to take existing internal-combustion vehicles and add power in the form of electricity, so the electric motor isn’t a replacement but an enhancement, with the benefit of hopefully fewer CO2 emissions.  

Rumors hold that the follow up to the Huracán, which is more compact and less expensive than the Aventador, will be a V8 hybrid, which is a smaller engine than the current V10. Whether or not the whispers are true, Lamborghini isn’t yet willing to say. It’s too soon to talk about that, Winkelmann told PopSci.

The heart of the bull

In the last couple of years, the automotive market has flipped inside out. The pandemic affected the supply chain in ways no one anticipated, but even more surprising to Lamborghini was the uptake of luxury products in the aftermath. Lamborghini broke its own sales records for 2022, delivering 9,233 vehicles worldwide: that’s a stunning ten percent over the sales figures for 2021. Lamborghini launched its SUV, the Urus, in 2017, which has been an explosive seller for the brand. Winkelmann says 80 percent of its new customers are Urus buyers; breaking into the SUV segment also helps attract more female buyers.

In the meantime, in 2021 Lamborghini shared the details of its Direzione Cor Tauri (“Heart of the Bull”) program, which lays out a roadmap for a nearly two billion dollar cash infusion. This, the highest-ever investment in the company’s history, translates directly to the development of hybrid and all-electric cars to get the Italian automaker primed for the switch to EVs in the next few years. That funding will be welcome as the automaker shifts its design and production to include electrification. Software and its upkeep will be another significant line item as driver-assist technology advances.

[Related: Behind the wheel of McLaren’s hot new hybrid supercar, the Artura]

Machine learning, for example, will allow engineers to do new things. Imagine there’s a kind of algorithm Lamborghini could use to train its motorsports teams to be better drivers on the track. “You can have an intelligent stability control, for example, that understands exactly your driving style, analyzes it, and helps you enter the corners [more efficiently],” Mohr said.

It may seem incongruous to tie advanced driver-assist tech to a supercar for people who love to geek out on cars and live to drive. What’s the attraction of a car that takes over for you when a car like a Lamborghini Huracan—or even the Urus SUV—is designed for the sheer pleasure of driving it? The technologies Lamborghini is looking at can enable a driver to improve their driving skills and enjoy the limits of the car, Mohr says.

The sounds of silence

For the 2023 Rolex 24 endurance race at Daytona International Speedway this month, Lamborghini fielded five teams: four in the GT Daytona class and one in the GT Daytona Pro category. The distinctive sound of the Raging Bull Huracáns echoed across the lanes, its voice calling out clearly. One of those teams was the only all-female lineup, the Iron Dames, piloting a can’t-miss-it hot pink Huracán. 

Motorsports like this endurance race give manufacturers a chance for research and development in high-stress situations for the cars. It also gives them an ear to the ground to listen to the fan base and get more insight on what’s needed to improve. 

What Lamborghini is hearing now is that the younger generation is demanding more sustainability, and they want to see change. The other is an open question about a personality crisis for supercars when EVs take over. EVs are much quieter than combustion engines, and that will affect not just motorsports events but everyday satisfaction while driving the cars. 

Mohr, who grew up admiring a poster of a purple Lamborghini Diablo on his wall, says he’s not about to let the brand lose its grip on the super sports car community. While both he and Winkelmann say they don’t have an answer to the sound question quite yet, they know it’s going to be uniquely Lamborghini. 

Mohr says people often suggest to him that he might have enjoyed working for Lamborghini 20 years ago instead of today, but he disagrees. “I say no, because from the engineering perspective, you now have much more freedom,” Mohr says. “To influence this kind of new generation of cars, this is a good change. I want to ensure that in 20 years I still like to buy cars, and if they are only boring cars, it will be really a mess. Because at the moment, to be honest, there are a lot of boring cars on the market that I will not buy. And I can see that in the electric world the dream of Lamborghini is continuing on. It’s pretty exciting.” 

The Huracán and other models by the Bull remain a touchstone goal for many, and Mohr welcomes the challenge to make sure it lives up to its reputation as it shifts into hybrid, and eventually all-electric, mode. 

“The favorite part of my job is the fact that I can influence the dream cars,” Mohr tells PopSci. “Because at the end of the day, every Lamborghini is a dream. It’s not like [with] volume manufacturers, they [launch] a kind of icon of the brand every 20 years. In our case, you work permanently with dreams.”

The post Lightning-fast Lamborghini is slowly shifting gears towards electrification appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
EV adoption doesn’t lighten energy costs for all American families https://www.popsci.com/environment/ev-energy-burden/ Fri, 27 Jan 2023 19:00:00 +0000 https://www.popsci.com/?p=507929
Lowest-income households would have a high energy burden—spending more than 4 percent of their income on fuel annually—even after switching to an EV.
Lowest-income households would have a high energy burden—spending more than 4 percent of their income on fuel annually—even after switching to an EV. DepositPhotos

More than 90 percent of vehicle-owning households would lower their energy burden—but low income families would still struggle.

The post EV adoption doesn’t lighten energy costs for all American families appeared first on Popular Science.

]]>
Lowest-income households would have a high energy burden—spending more than 4 percent of their income on fuel annually—even after switching to an EV.
Lowest-income households would have a high energy burden—spending more than 4 percent of their income on fuel annually—even after switching to an EV. DepositPhotos

Vehicle electrification is a major step toward decarbonizing the transportation sector, the biggest source of greenhouse gas (GHG) emissions in the US. In 2020, it accounted for 27 percent of the country’s emissions, more than half of which came from light-duty vehicles.

Replacing fossil fuel-powered automobiles with electric vehicles (EV) provides significant benefits for environmental and human health. Not only will carbon emissions decline, but air quality also improves, and there are fewer negative health outcomes due to pollution, says Daniel Horton, assistant professor at the Northwestern University Department of Earth and Planetary Sciences.

New research also shows that vehicle owners may see reductions in their transportation energy burden, or the percentage of their income that is spent on vehicle fuel. In a new Environmental Research Letters study, researchers found that more than 90 percent of vehicle-owning households in the country would shrink GHG emissions and their transportation energy burden if they switched to EVs.

“Due to the fuel cost savings, EVs effectively reduce the percentage of income that households have to spend on vehicles,” says Joshua Newell, professor of environment and sustainability at the University of Michigan and an author of the study.

Newell and his colleagues estimated fuel costs in terms of US dollars per mile. They created an equation that included the gasoline price for vehicles with internal combustion engines. For EVs, they used the levelized cost of charging (LCOC), which accounts for electricity prices as well as charging location, time of day, and power level. According to the study, areas with high transportation energy burden reductions have lower LCOC compared to gasoline prices, smaller temperature- and drive cycle-related impacts on fuel consumption (like how extremely cold temperatures tend to affect battery performance or how batteries or fuel cells adapt when vehicles conditions change abruptly), or both. 

Unequal benefits of driving an EV

Widespread deployment of EVs would effectively double the number of households with a low transportation burden, based on the authors’ modeling, which they defined as spending less than 2 percent of their income on fuel annually. However, the study also revealed that more than half of the lowest-income households (based on area median income) would continue to have a high energy burden—spending more than 4 percent of their income on fuel annually—despite driving an EV.

[Related: Thousands of EV chargers will soon line America’s highways.]

Currently, higher-income households and those with higher levels of education dominate EV ownership in the country. Vehicle-related energy costs are a relatively small portion of higher-income households’ monthly income, but they can be sizable chunks for lower-income households, says Newell.

Additional factors that contribute to this energy burden include vehicle miles traveled, fuel consumption, and electricity and charging infrastructure costs. Newell says suburban and rural households tend to experience a higher energy burden due to the lack of public transit and greater travel distances to services and jobs. 

Since the lowest-income households are not distributed uniformly in the US, the study mapped where high-energy burden communities are clustered, which were concentrated in the Midwest, Alaska, and Hawaii. This would enable policymakers and planners to “develop targeted strategies to address the uneven distribution of burdens as society transitions from internal combustion vehicles to EVs,” says Newell.

The authors recommend localized approaches to improve the benefits of EV adoption, which include regional subsidies for charging infrastructure, reducing the cost of electricity, and expanding access to cycling, walking, and other forms of low-carbon transportation.

EV policies can boost accessibility

Incentives such as tax credits to lower the upfront costs of buying new and used EVs are critical for accelerating their adoption, says Newell. The Inflation Reduction Act, which was signed into law last August, currently provides significant tax credits for these purchases.

Individuals who purchase a new EV, whether it’s the plug-in or a fuel cell kind, may qualify for a clean vehicle tax credit of up to $7,500. However, there are different rules for the tax credit depending on when the vehicle was purchased. To check if you and your vehicle qualify, visit the Internal Revenue Service websites for vehicles purchased before 2023 or those in 2023 and beyond. Those who buy a used electric vehicle starting in 2023 may also be eligible for a tax credit that equals 30 percent of the sale, with a maximum credit of $4,000.

[Related: Self-driving EVs use way more energy than you’d think.]

Other policy interventions that may increase EV accessibility for older and lower-income households include incentives for new and used vehicles that aren’t necessarily tied to taxes and programs that target low-income households. For instance, low-income California residents who live in a district that implements the Enhanced Fleet Modernization Program may receive up to $1,500 for scrapping their old, high-polluting vehicle. Those who choose to replace their old vehicle altogether with a cleaner, more fuel-efficient one may get up to $4,500.

Aside from purchasing incentives, access to charging infrastructure is also critical in the transition of light-duty passenger fleets to EVs in lower-income communities, says Horton, who was not involved in the new study. According to the study, increasing access to residential or cheaper public charging is a major factor in establishing the fair distribution of benefits and burdens among everyone, especially for renters and rural, lower-income, or multi-family households.

All of these solutions hope to balance out a major barrier to EV adoption—they are costly for many. “EV batteries make up about one-third the cost of the vehicle,” says Newell, “and until these costs are reduced through economies of scale and technological improvements, EV incentives are needed to achieve price parity with gasoline-powered vehicles.”

The post EV adoption doesn’t lighten energy costs for all American families appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Chevy’s first electrified Corvette, the E-Ray, is a heavyweight built to be quick https://www.popsci.com/technology/chevrolet-electrified-corvette-e-ray/ Mon, 23 Jan 2023 23:00:00 +0000 https://www.popsci.com/?p=507276
electric corvette
The E-Ray. Chevrolet

In convertible form, the new E-Ray will weigh in at 4,056 pounds.

The post Chevy’s first electrified Corvette, the E-Ray, is a heavyweight built to be quick appeared first on Popular Science.

]]>
electric corvette
The E-Ray. Chevrolet

It was just a few short years ago that Chevrolet debuted the first mid-engine version of its venerable all-American Corvette. After more than six decades punctuated with whispers and rumors, the mid-engine ‘Vette was finally a reality, and it was all-new from the ground up for model year 2020. That eighth generation (commonly called C8) Corvette was touted as the quickest one in history, leveraging better weight distribution and improved responsiveness.

Now Chevy has done it again, launching a new sports car on January 17 that shakes up the market. The 2024 Corvette E-Ray is electrified for the first time in the car’s history, moving the General Motors company toward its electrification goals. 

Here’s how we got here.

Seven decades of power

General Motors set hearts aflutter back in 2015 when it filed an application to patent the name E-Ray. Eight years later, the hybrid sports car is finally a reality. In fact, the E-Ray was launched 70 years to the day after the first Corvette prototype debuted at Motorama in New York City on January 17, 1953. Every one of the first batch of Corvettes was white with a red interior, only available with a convertible top.

While the Corvette is best known for its roaring V8, the first ‘Vette was built on a modified passenger car chassis and was propelled by a 3.9-liter inline-six engine called the “Blue Flame.” In 1955, Chevy upped the ante with a 4.3-liter V8 making 195 horsepower paired with a three-speed manual.

[Related: Behind the wheel of the most technically advanced Corvette on the market]

In 1966, the Corvette was the first to get the 427 cubic-inch engine, one of several powertrain options that included a 300-horsepower small-block 327 cubic-inch engine along with the larger 427, which came in 350-, 390-, and 425-horsepower versions. With stats like these, it’s no surprise that the Corvette’s appeal has grown through the decades with everyone from early astronauts like Alan Shepard to President Joe Biden counted as fans.

In 2019, the last year of the front-engine Corvette, the car was available with a 6.2-liter naturally aspirated V8 in 455- and 460-horsepower flavors. The Z06 came with a supercharged version making 650 horsepower and the even fiercer ZR1 was good for 755 horsepower and 715 pound-feet of torque. 

As for the forthcoming E-Ray, it pairs the 6.2-liter V8 from the gas-powered mid-engine 2022 model (called Stingray, a term that has been in the Corvette family since the 1960s) with an electric motor for a total power output of 655 horsepower and 630 pound-feet of torque. This combination gives the E-Ray all-wheel drive, and the brand says the E-Ray is the quickest production Corvette in history, boasting an impressive zero-to-60 miles per hour time of 2.5 seconds.

The E-Ray is a heavyweight 

That very first Corvette weighed less than 2,900 pounds. Over the decades, Chevy’s sports car has steadily gained heft, tipping the scales at about 3,600 pounds in 2020. Electrified powertrains like the one in the E-Ray are heavier than gas-only engines, requiring revised calculations for everything from the frames to the axles to the wheels and tires.

Chevrolet says the coupe version of the E-Ray will weigh in at 3,980 pounds, and the convertible adds 76 pounds for a total of 4,056. That’s a heavyweight sports car, compared to McLaren’s plug-in hybrid Artura at 3,303 pounds. It’s still lighter (and exponentially less expensive) than the ultra-exclusive all-electric $2 million Rimac Nevera, which is 4,750 pounds.

[Related: Strapping into the 2020 Chevrolet Corvette Stingray to take turns at 1.3 Gs]

Starting at about $60,000, the reimagined mid-engine 2020 Stingray was a shockingly affordable American stunner. The E-Ray, however, starts at a whopping $104,295 and tops out at $120,000 or more with options. 

While it may not be as destined to be as affordable for the masses as the gas-only Stingray, it still handily beats the price of rivals such as McLaren’s Artura and the Ferrari 296 GTB. Plus, the E-Ray doesn’t require a plug like the McLaren and Ferrari; the E-Ray’s small 1.9-kilowatt battery pack regenerates energy when the car slows and brakes. Unlike an all-electric vehicle, the hybrid E-Ray leans heavily on the gas-powered engine and uses the battery to increase torque and conserve fuel. 

Stealth mode and more

The E-Ray will also have a lower and wider stance; it’s 3.6 inches wider overall than the Stingray and offers a bit more elbow room. Plus, the tech of the new electric motor will affect how this iconic vehicle sounds.

Believe it or not, the delightful roar of a V8 isn’t music to everyone’s ears. When in hybrid mode, the Corvette will retain its distinctive growl. However, those who prefer a less-flashy approach in the neighborhood will appreciate Stealth Mode, which is a quiet all-electric drive mode that operates up to 45 miles per hour (let’s hope that doesn’t surprise pedestrians). 

EVs are quiet by nature, but automakers like Ford have created ways to make gas-powered vehicles quieter as well. You might remember the debut of Ford’s “Good Neighbor Mode” on the 2018 Mustang, which muffled the muscle car’s voice by adapting the active exhaust function.

As the US continues to explore new ways to bolster the EV infrastructure in terms of charging stations and alternate energy, the E-Ray is timed perfectly. While this iteration doesn’t ever need to be charged because it’s a hybrid, we expect to see an all-electric version next. 

In the meantime, expect to see the 2024 Corvette E-Ray available for sale later this year.

The post Chevy’s first electrified Corvette, the E-Ray, is a heavyweight built to be quick appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Self-driving EVs use way more energy than you’d think https://www.popsci.com/technology/ev-autopilot-energy-consumption-study/ Fri, 13 Jan 2023 18:00:00 +0000 https://www.popsci.com/?p=505370
Electric Car in Charging Station.
A billion self-driving cars on the road could use as much energy as all the world's data centers. Deposit Photos

Aside from safety concerns, autopilot software could nullify electric cars' sustainability benefit.

The post Self-driving EVs use way more energy than you’d think appeared first on Popular Science.

]]>
Electric Car in Charging Station.
A billion self-driving cars on the road could use as much energy as all the world's data centers. Deposit Photos

Truly self-driving cars are still at least a few years down the road—but if the day does come when the software becomes a de facto means of navigation, a new study indicates it’s going to need to be much more energy efficient. If not, autopilot features could ostensibly neutralize any self-driving electric vehicles’ environmental benefits. According to a new study from researchers at MIT, statistical modeling indicates the potential energy consumption needed to power a near-future global fleet of autopiloted EVs would generate as much greenhouse gas as all of the world’s current data centers combined.

The physical locales which house the massive computer arrays powering the world’s countless applications today generate about 0.3 percent of all greenhouse gas emissions—roughly the annual amount of carbon produced by Argentina. Researchers estimated this level would be reached from the self-driving tech in 1 billion autonomous vehicles, each driving just one hour per day. For comparison, there are currently around 1.5 billion cars on the world’s roads.

[Related: Tesla is under federal investigation over autopilot claims.]

Researchers also found that in over 90 percent of the models generated, EV computers would need to use less than 1.2 kilowatts of computing power just to keep within today’s realm of data center emissions, something we simply cannot achieve with current hardware efficiencies. For example, in another statistical model analyzing a scenario in which 95 percent of all vehicles are autonomous by 2050 alongside computational workloads doubling every 3 years, cars’ hardware efficiencies would need to essentially double every year to keep emissions within those same levels. In comparison, the decades’ long accepted industry rate known as Moore’s Law states that computational power doubles every two or so years—a timeframe that is expected to eventually slow down, not accelerate.

The parameters for such scenarios—how many cars are on the roads, how long they are traveling, their onboard computing power and energy requirements, etc—might seem relatively clear , but there are numerous unforeseen ramifications to also consider. Autonomous vehicles could spend more time on roads while people multitask, for example, and they could actually spur additional demographics to add to traffic, such as both younger and older populations. Then there’s the issue of trying to model for hardware and software that doesn’t yet exist.

And then there are the neural networks to consider.

[Related: Tesla driver blames self-driving mode for eight-car pileup.]

MIT notes that semi-autonomous vehicles already rely on popular algorithms such as a “multitask deep neural network” to navigate travel using numerous high-resolution cameras feeding constant, real-time information to its system. In one situation, researchers estimated that if an autonomous vehicle used 10 deep neural networks analyzing imagery from 10 cameras while driving just a single hour, it would generate 21.6 million inferences per day. Extrapolate that for 1 billion vehicles, and you get… 21.6 quadrillion inferences. 

“To put that into perspective, all of Facebook’s data centers worldwide make a few trillion inferences each day (1 quadrillion is 1,000 trillion),” explains MIT.

Suffice to say, these are serious hurdles that will need clearing if the automotive industry wants to continue its expansions into self-driving technology. EVs are key to our sustainable future, but self-driving versions  could end up adding to the energy crisis.

The post Self-driving EVs use way more energy than you’d think appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Big, heavy vehicles are dangerous—and that goes for electric ones, too https://www.popsci.com/technology/electric-vehicle-weight-safety/ Thu, 12 Jan 2023 16:30:00 +0000 https://www.popsci.com/?p=504966
The GMC Hummer EV weighs a whopping 9,000 pounds. That's about the same as three regular Honda Civics.
The GMC Hummer EV weighs a whopping 9,000 pounds. That's about the same as three regular Honda Civics. GMC

A transition to electric vehicles may mean rethinking safety measures.

The post Big, heavy vehicles are dangerous—and that goes for electric ones, too appeared first on Popular Science.

]]>
The GMC Hummer EV weighs a whopping 9,000 pounds. That's about the same as three regular Honda Civics.
The GMC Hummer EV weighs a whopping 9,000 pounds. That's about the same as three regular Honda Civics. GMC

There are a multitude of wonderful aspects about electric vehicles—they have a low carbon footprint, are pretty easy to maintain compared to gas guzzlers, and affordable options seem to be expanding. But, just like most solutions, they come with drawbacks—when an EV gets in a crash, it can be more expensive and more destructive than a typical accident. 

One reason why an EV crash can be so disastrous is their weight. To get an electric car from place to place requires energy that utilizes batteries. And for cars that can handle a lot of range and power, those batteries add up. For instance, a GMC Hummer EV weighs over 9,000 pounds, around 2,900 of which is just batteries. Similar distinctions exist between the electric and ICE (internal combustion engine) versions of the Ford F-150 Lightning, Mustang Mach-E, Volvo XC40 EV, and RAV4 EV. These electric versions may have lost the need for gasoline—but they’ve taken on some serious weight in return.  

The startling difference between EVs and their ICE counterparts was the focus of a keynote speech at the Transportation Research Board annual meeting on Wednesday from National Transportation Safety Board chair Jennifer Homendy.

“The U.S. transportation sector accounts for the largest portion of U.S. greenhouse gas emissions, and I firmly believe it is a human right to breathe clean air,” she said. “But we have to be careful that we aren’t also creating unintended consequences: more death on our roads.”​  

[Related: The 3 most exciting automotive reveals from CES 2023]

These concerns aren’t particularly new, at least when it comes to concerns about heavy vehicles in general. As far back as 2011 Michael Anderson, a University of California professor of economics, published a study that found that being hit by a car 1,000 lbs heavier than your own results in a 47 percent increase in the probability of your fatality. 

Nowadays, when there are not only big cars but big electric cars on the road, it can be worrisome for drivers in small cars, whether they are electric or gasoline powered. “What matters is less the average weight than the heterogeneity,” Anderson told Bloomberg last year. “There could be a window where it’s pretty unsafe to be driving (small, gas-powered vehicles) and getting into multi-vehicle accidents.”

Research is already underway to make EV batteries lighter, denser, and safer. Nevertheless, it’s crucial that policymakers, corporations, and consumers are aware of the risks that EVs pose to everyone on the road.

The post Big, heavy vehicles are dangerous—and that goes for electric ones, too appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
How the Inflation Reduction Act can help you save cash and energy https://www.popsci.com/diy/how-to-get-tax-credits-for-solar-electric-cars/ Thu, 12 Jan 2023 11:00:00 +0000 https://www.popsci.com/?p=504832
solar panels on a roof
Integrating solar to your home is one way you can apply for tax credits from the Inflation Reduction Act. Deposit Photos

From new solar panels to EVs, your 2023 sustainability goals might be a little easier to achieve with IRA tax credits.

The post How the Inflation Reduction Act can help you save cash and energy appeared first on Popular Science.

]]>
solar panels on a roof
Integrating solar to your home is one way you can apply for tax credits from the Inflation Reduction Act. Deposit Photos

Government incentives might encourage you to add another goal to your new year’s resolutions in 2023: reducing your carbon footprint. Starting this year, Americans can take advantage of a stream of tax credits to make their homes, cars, and businesses more sustainable thanks to the Inflation Reduction Act (IRA).

The new legislation narrowly passed Congress after a lengthy political battle in the Senate last August. Considered one of President Biden’s signature achievements, the $440 billion package provides money for clean energy and lowers drug costs for older people, among other things. The government plans to pay for the credits through raising taxes on corporations that make over $1 billion in profit per year, taxing stock buybacks and investing in the Internal Revenue Services to catch tax cheats. If all works out as planned, the package will actually bring in $300 billion extra dollars, which will go towards paying off government debt.

Climate policy experts like Rachel Cleetus, the policy director for the climate and energy program at the Union of Concerned Scientists, see the IRA as the stimulus the country needs to make America’s energy infrastructure more sustainable, even if it’s just an initial step to meeting emission reduction goals. Cleetus says the law is the culmination of years of work.

“It’s a moment of relief, more than anything else,” she says. “Clean energy is already so competitive in the marketplace, here in the US and around the world, and this will really tip the scales in favor of accelerating that momentum around renewable energy, wind, solar, etc.”

With a receipt and tax form, consumers can save up to thousands of dollars on everything from electric cars to solar panels to two-pane windows. As you take stock of your sustainability resolutions this year, review how to apply for IRA credits.

“By being proactive, consumers can have a plan to make the most cost-effective upgrades for their specific housing and local policy circumstances once IRA funding is made available,” says Dan Esposito, a senior policy analyst at the an energy and climate policy think tank, Energy Innovation.

What are the tax credits?

There are two main buckets of credits you might qualify for: electric vehicle credits and home improvement credits. The first is purchasing an electric vehicle. To reap maximum benefits from the credits, you’ll want to make sure that it complies with a long list of technical and trade manufacturing requirements, like making sure the vehicle’s final assembly was in a US facility. 

Consumers should pay special attention to electric vehicle credits because they will most likely give buyers “the biggest bang for their buck,” Esposito wrote in an email to PopSci. A new electric vehicle can qualify for up to a $7,500 credit and used vehicles could be $4,000. (You can find more details about IRA tax credits from electric vehicles in our guide.) 

“The tax credits for electric vehicles are generally most impactful in terms of reducing one’s climate footprint, as the average US passenger vehicle emits roughly 60 percent more greenhouse gases than the average US home using natural gas,” he says. “However, the [exact] climate benefit depends on several factors, such as the vehicle you currently have (hybrid vs. gas guzzler), how often you drive, the climate you live in, and your home’s insulation,” Esposito writes.  

[Related: Check before you buy: Here are the new EVs that qualify for the clean vehicle tax credit]

The second bucket of IRA credits can be collected by reducing your home’s emissions through switching to renewable energy and making it more energy efficient. Consumers can save money on a range of products designed to reduce their home’s reliance on fossil fuels. You can get money for putting a solar panel on your roof. You can also get money from buying energy efficient products like two-pane windows that better insulate your house. You can also receive a $300 tax credit for purchasing a heat pump, instead of the typical furnace or energy inefficient air conditioners that most Americans own. 

If you plan to replace both the furnace and an air conditioning unit, then the tax credit for heat pumps could be worthwhile as well. How much you actually get back in credits, however, will vary from house to house—wiring might need to be upgraded or a heat pump designed to tolerate colder climates. “The timing of when these credits will become available will vary by state, with state energy offices set to play the dominant role in facilitating their rollout,” Esposito writes. “In the meantime, homeowners can assess the state of their house to determine which upgrades to seek out in the coming years.”

While renters might be locked out of some credits that require home ownership, they are still eligible for many incentives. It might be worth it to make the long-term investments if they plan to stay in their rental space for a year or more, Cleetus says.

[Related: How heat pumps can help fight global warming]

“The question for renters is obviously, how long are you going to be in a place? And is that something that you and your landlord want to split the cost?” she says. “In some cases, you can recoup the cost within a year, so even if you’re renting for just a year, it might make sense to do it.”

For example, it might make sense to purchase a more energy efficient air conditioner that will save you money on heating and cooling bills in the long run. And with the insulation-related tax credits, you can recoup the cost faster, perhaps in a year or two, than you would otherwise, according to Cleetus.

What to know before filing for the credits

Consumers should research what tax credits they can take advantage of before they buy any green products, says Susan Allen, senior manager for tax practice and ethics with the American Institute of Certified Professional Accountants (CPA). 

The amount of money you get will differ depending on your income, the number of dependents you have, and if you rent or own your home, so it’s important to do your research before buying anything that could have a tax credit or an upfront discount, Cleetus and Allen say.

“Planning before you buy helps you make the most informed decision on the ultimate savings you can accomplish,” Allen says. “If you can work with a CPA tax or financial planner, wonderful. They can help guide you and maybe save a lot of time and headache while you might be trying to navigate it.”

One of the best ways to make sure you can cash in on the credits is to ask the manufacturer before you make a purchase, Allen says. Car dealers will be aware of which vehicles qualify for the credits and appliance companies that manufacture electric stoves or other green products will likely know how much you can save. 

Cleetus says stores should start adopting labels that indicate if a product is eligible for tax credits. “That’s the kind of thing that will be really impactful, so that people don’t have to search,” she says. 

[Related: The Inflation Reduction Act and CHIPS could kick US climate policy back into action]

If you don’t have an accountant, you can also take advantage of a number of government guides, Allen and Cleetus say. Consumers can refer to the White House’s interactive clean energy website, which helps users determine what credits are available to them. The Department of Energy published a list of the credits people can save specifically on green energy and energy-efficient household appliances. The Internal Revenue Services details the cars eligible for electric vehicle credits. For those who want a more thorough breakdown of the credits, the White House also published a 183-page guidebook. And further guidance is still coming out, Cleetus says. 

And while the tax credits can help you save money on clean energy investments, the IRA doesn’t quite live up to what the country promised during global climate negotiations.The US pledged to reduce greenhouse gas emissions by 50 to 52 percent by 2030. The package aims to reduce emissions by about 40 percent. “It’s not enough, for sure. From a science perspective, we know we have to go further, faster,” Cleetus says. 

Still, the IRA is a vital step in accelerating the nationwide transition to clean energy infrastructure. “It’s important to think about this in a holistic way,” Cleetus says. “These tax credits will go a long way towards many, many households lowering their carbon footprint. But they’re also part of a broader system that has to shift.”

The post How the Inflation Reduction Act can help you save cash and energy appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Saltwater is a lithium-ion battery’s worst enemy. This aqueous prototype embraces it. https://www.popsci.com/technology/ev-saltwater-aqueous-batt/ Wed, 11 Jan 2023 16:00:00 +0000 https://www.popsci.com/?p=504636
Car submerged in flooded street
Aqueous batteries embrace saltwater instead of letting it be their ruin. Deposit Photos

Coastal flooding can cause lithium-ion fires in EVs, but a new battery breakthrough sidesteps the issue entirely.

The post Saltwater is a lithium-ion battery’s worst enemy. This aqueous prototype embraces it. appeared first on Popular Science.

]]>
Car submerged in flooded street
Aqueous batteries embrace saltwater instead of letting it be their ruin. Deposit Photos

Hurricane Ian caused billions of dollars in damage when it hit Florida in the fall of 2022. Along with $112 billion in damages, 152 fatalities, and countless uprooted lives, the fallout included at least 12 electric vehicle fires caused from lithium-ion batteries coming into contact with saltwater flooding in from the ocean. Unlike standard fires, however, these battery blazes require a significant amount more water to quell them due to their unique chemical reactions, with the International Association of Fire Chiefs suggesting somewhere between 3,000 and 8,000 gallons of sustained dousing.

It’s an unfortunate downside to EVs’ lithium-ion power sources, especially as coastal flooding increasingly becomes the norm, but a promising new alternative could one day be available to carmakers. Thanks to novel breakthroughs at the University of Central Florida electric cars could one day embrace saltwater instead of avoiding it entirely.

[Related: Rain, storms, and mudslides batter California.]

A research team at UCF’s NanoScience Technology Center recently unveiled a new form of aqueous battery that replaces lithium-ion batteries’ notoriously volatile, extremely flammable organic solvents with actual saltwater. What’s more, the new EV power source detailed in the team’s study published in Nature Communications appears to be safer, faster charging, and pack just as much punch as existing batteries.

Saltwater is a death sentence for traditional lithium-ion setups, corroding and subsequently short circuiting the battery, which can then interact with internal solvents to cause fires. By utilizing a saline solution’s metal ions (including potassium, magnesium, calcium, and sodium) as the battery’s liquid electrolytes, however, UCF’s new design proved much more stable while also charging faster than its lithium-ion competition.

[Related: The 3 most exciting automotive reveals from CES 2023.]

Aqueous batteries aren’t a new concept, but until now they’ve shown themselves to be extremely unstable and liable to form minute, corrosive metallic structures known as dendrites. The team’s new battery, however, relies on a “forest-like” 3D zinc-copper anode design containing a thin zinc-oxide protective layer. This nano-engineered covering allowed scientists to precision control the electrochemical reactions for increased stability and charging capabilities.

The result, says research lead Yang Yang, an associate professor at UCF, is a potentially revolutionary battery to “remain safe even if they are used improperly or are flooded in saltwater.” While it is still likely a while until we start seeing Ford F-150 Lightning trucks barreling down flooded roads thanks to aqueous saltwater batteries, the new innovations could soon address one of lithium-ion batteries’ most concerning hazards, thus encouraging the rapidly-approaching EV transition. 

The post Saltwater is a lithium-ion battery’s worst enemy. This aqueous prototype embraces it. appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
The 3 most exciting automotive reveals from CES 2023 https://www.popsci.com/technology/the-coolest-cars-from-ces-2023/ Mon, 09 Jan 2023 23:00:00 +0000 https://www.popsci.com/?p=504212
The Ram Revolution Concept.
The Ram Revolution Concept. Ram

The Ram Revolution electric pickup made a splash, but so did this cool tech from BMW and VW.

The post The 3 most exciting automotive reveals from CES 2023 appeared first on Popular Science.

]]>
The Ram Revolution Concept.
The Ram Revolution Concept. Ram

The annual Consumer Electronics Show may be known as a venue for tech companies to show off gadgets like folding screens, smart watches, televisions, and even random gizmos like a “Smart Hose Timer.” But CES is also a place for automakers to reveal how they’re embracing technology, too. A few rose to the top with high-profile launches that caught our eye. These are the three unveilings we thought were the most fascinating.

Ram Revolution electric truck concept

The biggest automotive moment from the show may well have been the splashy reveal of the much-anticipated Ram Revolution, an all-electric pickup truck. Ford is already selling its Lightning EV and Chevrolet’s Silverado EV will go on sale this spring, so while it may seem that Ram is catching up, it appears that it may be right on time in the grand scheme of things.  

President and chief analyst at AutoPacific Ed Kim says the importance of the Ram Revolution, the truckmaker’s first EV, can’t be overstated for the North American market. Kim was on the show floor at CES and saw the launch in person. 

“In the EV world, there is so much discussion about EV pickups,” Kim says. “We have already seen Ford and GM’s EV trucks, and we’ve been waiting to see what Ram would come up with. Yes, the Revolution is a concept, but the brand did have a real production frame on the show floor. It’s more than a flight of fancy.” 

Ram’s gas-powered 1500 pickup received a major overhaul a few years back, with the brand inserting its excellent UConnect infotainment system into the new model with a large optional screen. The electric Revolution concept took that a step further with not just one but two 14.2-inch displays, and the lower screen can be removed to use as a separate tablet when the truck is parked. 

The body style also showcased the possibilities of what can be done with EVs when designers don’t have to work around massive engines that take up a lot of space. “Here’s a truck you can use to carry an 18-foot pole or log with a pass-through from the nose to the tailgate,” Kim said. “What’s interesting about that feature is that it really does demonstrate just how much an EV car or truck can change the basic architecture of a vehicle. In an ICE vehicle, you can’t run something through the truck. Electric motors are miniscule compared to an engine, and you can do a lot with that.”

The Revolution features three rows, with highly configurable second- and third-row seats. Its extra-long cab allows a limo-like experience when the second row is pushed back or when more passengers need to ride along, all three rows can be pressed into service. Fully independent rear suspension is a step above where it is now. It should drive more like a big, nice SUV than a pickup truck after it goes on sale in 2024.

The i Vision Dee.
The i Vision Dee. BMW

BMW i Vision Dee

Ram wasn’t the only automaker making waves at the show. BMW showed off a flashy concept car called i Vision Dee (that last word stands for “Digital Emotional Experience”) featuring a color-changing exterior. Working with company E Ink, BMW had the i Vision Dee covered in 240 different panel segments that can alter the appearance of the car into 32 available hues, controlled by a smartphone. 

“With the BMW i Vision Dee, we are showcasing what is possible when hardware and software merge,” BMW Group chairman Oliver Zipse said.

Last year at this time, BMW unveiled a similar concept exterior with comparatively limited capabilities. The concept from last year could only change from white to black to gray, laminating the body of the car with an electrophoretic film (which separates charged molecules) containing “microcapsules the diameter of a human hair,” BMW said. As the company explained it, each capsule contains differently charged particles which become visible when an electric field is applied. 

Beyond the wild exterior, the BMW i Vision Dee showcased a virtual dashboard that displayed on the windshield instead of the usual spot and integrated that with virtual reality. It also debuted a new voice assistant, Dee, that operates more like an artificial reality bot than a simple voice  command prompt. 

While it’s unlikely the i Vision Dee will become a production car, BMW still hopes to draw attention to one of its new EVs and to its vision for future technology.

The ID.7 is like an electric Passat. Shown here with "smart camouflage."
The ID.7 is a bit like an electric Passat. Shown here with “smart camouflage.” VW

Volkswagen debuts the ID.7

Fans of the Passat were crushed that Volkswagen discontinued the gas-powered sedan, and the ID.7 is the German brand’s peace offering in the form of an EV. It also serves as hopefully a better follow-up to the electric ID.4, which has been plagued with software challenges that have prevented the brand from dominating the EV segment in ways it hoped. The ID.7 is six inches longer than the now-defunct Passat, with a higher roofline that shows echoes of Mercedes-Benz’s EV lineup. 

Interestingly, the new ID.7 is a sedan like the Passat, which bucks the crossover/SUV trend automakers have followed in recent years. 

“The last 10-15 years has seen the sedan market decline dramatically and people want more crossovers,” Kim said. “You can see the details and proportions of the ID.7, and it looks like a traditional sedan. I do think it is important to point out that even though consumers have been less interested in sedans than SUVs, in the EV universe we have seen one particular product that bucked that trend—and that’s the Model 3.”

Kim believes sedans may make a bit of a resurgence in the EV segment because of the success of the Model 3 and also because sedans are more aerodynamic. With a lower profile, sedans typically achieve better range; since range anxiety remains a main concern of EV shoppers and rejectors, a sedan can add more appeal. 

Masked in “smart camouflage” to obscure the design details for now, the ID.7 model at CES was covered in “at least” 40 layers of paint to create 22 disparate electrified illuminated zones. We probably won’t see that paint scheme in production, however.

Hungry for more news out of CES? PopSci’s gear team has created three different roundups of the coolest stuff they noticed last week.

And watch the reveal of the Ram Revolution Concept, below.

The post The 3 most exciting automotive reveals from CES 2023 appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
What can ‘smart intersections’ do for a city? Chattanooga aims to find out. https://www.popsci.com/technology/smart-intersections-chattanooga-tennessee/ Mon, 09 Jan 2023 12:00:00 +0000 https://www.popsci.com/?p=503806
an aerial view of an intersection
Photo by John Matychuk on Unsplash

Sensors can help make an intersection more knowable. Here's how a network of them could help a Tennessee city.

The post What can ‘smart intersections’ do for a city? Chattanooga aims to find out. appeared first on Popular Science.

]]>
an aerial view of an intersection
Photo by John Matychuk on Unsplash

An intersection is a complex place, even when regulated by a traffic signal. They’re full of vehicles with potentially distracted drivers trying to inch across the asphalt, and pedestrians with different levels of mobility attempting to use crosswalks. Throw bikes and other two-wheelers into the mix, and it can get hectic and hazardous, especially for the people not protected in machines made of metal and glass. 

There are other aspects of a modern urban streetscape as well, like operators of electric vehicles who want to find a place to charge. 

Experts hope that integrating more data-collection tech, in addition to traffic signals, can potentially help with issues like these. Chattanooga, Tennessee, is planning to create 86 new so-called smart intersections that are monitored by sensors such as lidar and cameras. 

The goal of making an intersection smart is “to be able to make sense of that intersection” based on the information provided by the sensors, says Mina Sartipi, the director of the Center for Urban Informatics and Progress at the University of Tennessee, Chattanooga. It will help them answer questions like: “Where are the cars? Where are the people? How close do they get to each other? How safe is it for a wheelchair [user]? Do we allow a disabled person, or an elderly [person], or a mom or a dad pushing a stroller, enough time to cross the street or not?” 

Adding the sensors will “make that environment observable,” she adds. 

[Related: It’s an especially dangerous time to be a pedestrian in America]

The project is supported by a $4.57 million grant from the US Department of Transportation, and builds on an already existing testbed of 11 other smart intersections in the same city. All told, the city will have nearly 100 smart intersections once the new ones come online. 

The DOT grant, she says, “basically brings transportation, energy, and people together.” The energy element comes from trying to connect people driving electric vehicles to charging stations if they need it, taking into account variables like if a station is available. 

The gray area represents the expected area the smart intersection project will span.
The gray area represents the expected area the smart intersection project will span. Courtesy Center for Urban Informatics and Progress (CUIP)

Gathering data from intersections involves sensors like cameras and lidar, which use lasers to detect objects. And intersections, like people, are not all the same. “We do pay attention to the needs of each intersection as well,” she says. “It’s not necessarily copy-paste.” 

With lidar—which is also a key sensor that autonomous vehicles use to perceive the world around them—the data from those will be interpreted by a computer vision company called Seoul Robotics. “We interpret the information by looking at the objects that it sees in that world,” says William Muller, the vice president of business development at the company. “Those main three objects that we look at are people, vehicles, and bikes.”

“Because it’s all three-dimensional, it’s highly accurate,” he adds. “We’re within centimeters of accuracy, of knowing where those objects are in the three-dimensional space.” In an ideal world, the system could know if someone is crossing an intersection slowly, and the signals could take that into account—or even warn vehicles to be aware of them. 

To the west and south of Chattanooga, on an old airport runway in Texas, is a smart intersection used for research purposes at Texas A&M University’s RELLIS campus. “There’s a lot of paved surface there,” says Srinivasa Sunkari, a senior research engineer at Texas A&M Transportation Institute. Part of what makes the intersection smart, he says, is the detection sensors that it has, such as radar and a fish-eye camera. The intersection does not have regular traffic passing through it, but is used for tests. 

Sunkari says that smart intersection initiatives like in Chattanooga, “when done smartly, and when implemented with the right infrastructure, it gives an opportunity to improve pedestrian safety.” 

The project in Chattanooga starts later this year and is expected to last for three years. While connecting EV drivers with charging stations is the main focus of the $4.57 million grant, having nearly 100 intersections with rich sensor data flowing from them should allow researchers to study various aspects of them and ideally optimize the streetscape.

The post What can ‘smart intersections’ do for a city? Chattanooga aims to find out. appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Mercedes-Benz makes a hefty promise to install 2,500 EV fast chargers across the US https://www.popsci.com/technology/mercedes-benz-ev-charging-stations/ Fri, 06 Jan 2023 16:00:00 +0000 https://www.popsci.com/?p=503649
Concept rendering of two Mercedes-Benz EVs charging at public station
The stations are slated to arrive at 400 locations across the country. Mercedes-Benz

The luxury carmaker aims to provide universal EV charging stations at 400 sites across the US by 2027.

The post Mercedes-Benz makes a hefty promise to install 2,500 EV fast chargers across the US appeared first on Popular Science.

]]>
Concept rendering of two Mercedes-Benz EVs charging at public station
The stations are slated to arrive at 400 locations across the country. Mercedes-Benz

One of the biggest issues holding back many drivers from making the switch to electric vehicles is the comparative lack of supportive infrastructure like public charging stations. After decades of fossil fuel guzzling cars traversing the country, the US now hosts an estimated 145,000 gas stations compared to around just 53,000 EV charging locales. But this week at CES 2023 in Las Vegas, Mercedes-Benz announced plans to provide a sizable boost to the grid over the next few years—drivers can soon expect another 2,500 fast chargers at over 400 sites around the country within the next four years.

The news came courtesy of Mercedes-Benz Chief Technology Officer Markus Schäfer, who also reiterated the company’s goal to make battery-powered EVs more accessible to the public.The company  aims to become carbon neutral by 2039. To accomplish the project, Mercedes-Benz is partnering with the battery storage provider MN8 Energy and solar power company ChargePoint as its North American partners for the new stations.

[Related: Mercedes vehicles will soon be getting game-quality graphics on their hyperscreens.]

And before you ask—don’t worry, you won’t need a swanky EV Benz to use the upcoming locations. Schäfer explained that plug-and-charge compatibility will be integral to the stations, so that any EV owner can refuel as needed.

Strategic locales are key to Mercedes-Benz’s newest EV endeavor. As Ars Technica highlights, many public electric vehicle power stations are currently relegated to the outskirts of shopping center parking lots, making the visits uncomfortable and potentially unsafe for drivers at certain times of day or night. As such, sites will be chosen “with food outlets and restrooms situated nearby,” as well as provide security features like surveillance cameras to offer “a safe and secure charging environment.” As for the number of stations at each location, drivers can expect a minimum of 4 and as many as 30 individual charging ports.

Although the overall cost isn’t cheap—roughly $1.1 billion split between Mercedes-Benz and MN8 Energy over the next few years. But, EVs are key to the world’s transition to a fully renewable energy structure, and many more of these kinds of projects will be needed to ensure that becomes a reality. As such, similar plans from the European carmaker are expected in both China and Europe down the line. At the same time, Mercedes-Benz has a  2030 deadline for a complete transition to electric car manufacturing. 

The post Mercedes-Benz makes a hefty promise to install 2,500 EV fast chargers across the US appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Check before you buy: Here are the new EVs that qualify for the clean vehicle tax credit https://www.popsci.com/technology/clean-vehicle-tax-credit-list/ Wed, 04 Jan 2023 02:00:00 +0000 https://www.popsci.com/?p=502722
2023 Cadillac LYRIQ driving at dusk.
2023 Cadillac LYRIQ driving at dusk. Cadillac

Certain models may be up for a major federal tax credit.

The post Check before you buy: Here are the new EVs that qualify for the clean vehicle tax credit appeared first on Popular Science.

]]>
2023 Cadillac LYRIQ driving at dusk.
2023 Cadillac LYRIQ driving at dusk. Cadillac

This article was originally featured on The Drive.

The Internal Revenue Service (IRS) has released its list of vehicles that qualify for a clean vehicle tax credit.

The list is available on the IRS website, with the tax credit scheme taking effect from January 1, 2023. Customers purchasing eligible vehicles may be entitled to a tax credit of up to $7,500, depending on certain income tests. Buyers must earn less than $300,000 in household income if in a couple for tax purposes, or $150,000 if single. As covered earlier by The Drive, vehicles aren’t solely eligible based on a make and model basis. The individual vehicle itself must have been assembled in the US, too.

Notably, the tax credit is also only applicable to vehicles under certain price limits. To remain eligible, MSRP must be below $80,000 for vans, SUVs, and pickups, or $55,000 for other vehicles. This has the unintended side effect of creating some weird edge cases. For example, the five-seat model of the Tesla Model Y doesn’t count as an SUV. Thus, with an MSRP of above $55,000, it’s not eligible for the credit. However, the seven-seat models are counted as SUVs, and thus qualify for the credit as the relevant limit is $80,000, instead.

Overall, US manufacturers are well-represented in the list. The Chevrolet Bolt, Bolt EUV, and Cadilliac Lyriq are present for GM. Meanwhile, Ford’s growing range of EVs also makes the list, including the Escape Plug-in Hybrid, F-150 Lightning, and Mustang Mach-E. The Lincoln Aviator and Corsair are present too, both in Grand Touring trim. Tesla’s Model Y and Model 3 are present, as per the above noted price restrictions, as are the Rivian R1S and R1T.

Chrysler and Jeep both make the list too, albeit without any full EVs. Instead, the Stellantis brands instead attract credits for plug-in hybrids, with the Chrysler Pacifica, Jeep Wrangler 4xe, and Jeep Grand Cherokee 4xe.

Other manufacturers with vehicles on the list include VW, Volvo, Nissan, BMW, and Audi. Beyond that, other automakers have signed agreements with the IRS to qualify under the scheme. However, they are yet to submit lists of their eligible models to the government agency. This includes Jaguar, Hyundai, Kia, Mazda, and Mercedes Benz, among others.

The scheme will face further changes as soon as March, as the Treasury Department firms up battery sourcing requirements. At that point, the rules will shift to consider the source location of battery components and critical minerals used in the vehicle’s construction. Vehicles that don’t comply with the full requirements may only be eligible for a lesser tax credit.

While some countries are rolling back EV credits, the US is currently going full-steam ahead. The aim is to not just spur uptake of electric vehicles. The scheme also hopes to incentivize the construction of both vehicles and the batteries themselves in the US, all the way back to the sourcing of the raw mineral components. In any case, if you’ve got your eye on a particular EV that qualifies for the scheme, you might be best placed to order it sooner rather than later.

The post Check before you buy: Here are the new EVs that qualify for the clean vehicle tax credit appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Which vehicle would win—an electric Hummer or a Corvette? https://www.popsci.com/technology/hummer-ev-races-corvette-z06/ Tue, 03 Jan 2023 23:00:00 +0000 https://www.popsci.com/?p=502807
gmc hummer ev
The 2022 GMC Hummer EV. GM

A competition between the two offers lessons in the difference between quickness and speed.

The post Which vehicle would win—an electric Hummer or a Corvette? appeared first on Popular Science.

]]>
gmc hummer ev
The 2022 GMC Hummer EV. GM

Imagining a 9,000-pound GMC Hummer EV racing a 3,600-pound Corvette Z06 sports car evokes an image of an elephant lined up next to a cheetah. Considering that the Hummer EV’s Ultium battery pack alone weighs nearly as much as the Corvette, the question of which will win seems obvious. 

Not so fast, though: YouTuber Austin Everett of Speed Phenom recently pitted his own Z06 against the massive all-electric truck, and the results were much closer than you might think. 

Here’s what a race like this can teach us about the difference between being fast and being quick—and what aspects of a vehicle contribute to those qualities.

Quick vs fast

For a traditional drag race, two vehicles generally start side by side on a flat, straight quarter-mile strip. A device called a “Christmas tree” sits between them, initiating a light sequence that usually switches from amber to green for go. During a race, a red light indicates an infraction of some kind at the start. For an amateur head-to-head drag race (don’t try this at home, kids), someone can signal the cars manually. 

While horsepower makes a car fast in terms of its top speed, getting the jump at the starting line is about quickness, and torque plays a starring role. The 2023 Corvette Z06 boasts 670 horsepower and 460 pound-feet of torque, for which Chevrolet claims a 0-to-60 mph time of 2.6 seconds. Equipped with the Z07 Performance Pack (like Everett’s vehicle), the car can achieve that acceleration in 2.8 seconds. 

In contrast, the Hummer EV has an astounding 1,000 horsepower and brags of 11,500 pound-feet of torque. To be clear, the latter number is the sum of four motors, one at each wheel, each generating between 380 and 400 lb-ft of what enthusiasts call “grunt.” As is, the powerful EV truck can reach 60 mph in about four seconds. But in a setting called “Watts to Freedom” mode, the Hummer EV can shave a second from that time.

Surprising (and unsurprising) results 

Electric cars like the Hummer EV turn stored energy into speed nearly instantaneously, versus gas-powered cars like the Z06, which employ a mechanical process to convert fuel to energy. Still, on this particular chilly day for the competition in question, the Z06 raced to 60 mph in 3.4 seconds and the Hummer EV reached that speed in 3.8 seconds. 

Driving the Hummer in WTF mode (remember, that technically stands for “Watts to Freedom”) provides an unexpected thrill if you haven’t experienced it before. WTF mode enables peak torque for a few seconds, much like launch mode in gas-powered cars. When I tried it, my face broke into a wide, uncontrolled grin that erupted into a laugh. The sensation of being propelled into the space ahead with that kind of force in such a big car feels like being strapped to a bullet train. 

During Speed Phenom’s test, the big Hummer EV rocketed off the line, as expected. Everett said it was faster than Chevrolet’s vaunted sports car up to about 40 mph. By the time each vehicle reached 60 mph, however, the internal-combustion-powered Z06 made up the time and then some. In the end, the Corvette handily won the competition, but it wasn’t the pounding many might expect between the sleek car and the hulking EV. 

Ultimately, while torque is impressive up front for the GMC, the Chevy won with sustained torque and horsepower that carried it to the finish line. Contributing to the Hummer EV’s relative lag is its bulky weight and off-road-ready 35-inch tires, which are fantastic for tackling dirt and rock but less so for speed. 

EVs are getting even quicker

For the uninitiated, a reminder: EVs can be really quick, and that’s thanks to several factors. As Car and Driver explains it, EVs quickly deliver maximum torque due in part to the front and rear motors providing additional traction to all four tires. As a result, EVs can “channel more of their power to the pavement than if they had two-wheel drive and to launch from rest aggressively with minimum or no wheelspin.” EVs also ride on specially-designed wheels and tires crafted to carry the extra weight of electric components. 

As an extreme example, a few months ago, I took a spin in a 1,914-horsepower Rimac Nevera, which cranks out 1,741 lb-ft of torque for its $2 million-plus price tag. “Do you mind if I drive fast?” the Rimac engineer asked me, before flattening the back of my head to the passenger seat with an explosion of power. Further, Rimac’s engineers claim a 0-60 mph time of less than one second is possible. 

For those without that kind of balance in their bank account, even Kia’s new EV6 GT claims an impressive 576 hp and 546 pound-feet of torque for about $50,000. With that level of power, Kia says its humble four-door crossover matches up to a Porsche Taycan, Ferrari Roma, and Lamborghini Huracan Evo Spyder RWD for acceleration. 

In the real world, most people don’t need massive torque or horsepower to enjoy the ride. On the other hand, it does feel good to dust that obnoxious tailgater every now and again. 

Watch the competition, below:

The post Which vehicle would win—an electric Hummer or a Corvette? appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Ford used a quantum computer to explore EV battery materials https://www.popsci.com/technology/ford-quantum-ev-battery/ Sat, 24 Dec 2022 12:00:00 +0000 https://www.popsci.com/?p=501690
One of Ford's battery modules
One of Ford's battery modules. Ford

Quantum computers can simulate the properties of new materials that might make batteries safer, more energy-dense, and easier to recycle.

The post Ford used a quantum computer to explore EV battery materials appeared first on Popular Science.

]]>
One of Ford's battery modules
One of Ford's battery modules. Ford

Quantum researchers at Ford have just published a new preprint study that modeled crucial electric vehicle (EV) battery materials using a quantum computer. While the results don’t reveal anything new about lithium-ion batteries, they demonstrate how more powerful quantum computers could be used to accurately simulate complex chemical reactions in the future. 

In order to discover and test new materials with computers, researchers have to break up the process into many separate calculations: One set for all the relevant properties of each single molecule, another for how these properties are affected by the smallest  environmental changes like fluctuating temperatures, another for all the possible ways any  two molecules can interact together, and on and on. Even something that sounds simple like two hydrogen molecules bonding requires incredibly deep calculations. 

But developing materials using computers has a huge advantage: the researchers don’t have to perform every possible experiment physically which can be incredibly time consuming. Tools like AI and machine learning have been able to speed up the research process for developing novel materials, but quantum computing offers the potential to make it even faster. For EVs, finding better materials could lead to longer lasting, faster charging, more powerful batteries. 

Traditional computers use binary bits—which can be a zero or a one—to perform all their calculations. While they are capable of incredible things, there are some problems like highly accurate molecular modeling that they just don’t have the power to handle—and because of the kinds of calculations involved, possibly never will. Once researchers model more than a few atoms, the computations become too big and time-consuming so they have to rely on approximations which reduce the accuracy of the simulation. 

Instead of regular bits, quantum computers use qubits that can be a zero, a one, or both at the same time. Qubits can also be entangled, rotated, and manipulated in other wild quantum ways to carry more information. This gives them the power to solve problems that are intractable with traditional computers—including accurately modeling molecular reactions. Plus, molecules are quantum by nature, and therefore map more accurately onto qubits, which are represented as waveforms.

Unfortunately, a lot of this is still theoretical. Quantum computers aren’t yet powerful enough or reliable enough to be widely commercially viable. There’s also a knowledge gap—because quantum computers operate in a completely different way to traditional computers, researchers still need to learn how best to employ them. 

[Related: Scientists use quantum computing to create glass that cuts the need for AC by a third]

This is where Ford’s research comes in. Ford is interested in making batteries that are safer, more energy and power-dense, and easier to recycle. To do that, they have to understand chemical properties of potential new materials like charge and discharge mechanisms, as well as electrochemical and thermal stability.

The team wanted to calculate the ground-state energy (or the normal atomic energy state) of LiCoO2, a material that could be potentially used in lithium ion batteries. They did so using an algorithm called the variational quantum eigensolver (VQE) to simulate the Li2Co2O4 and Co2O4 gas-phase models (basically, the simplest form of chemical reaction possible) which represent the charge and discharge of the battery. VQE uses a hybrid quantum-classical approach with the quantum computer (in this case, 20 qubits in an IBM statevector simulator) just employed to solve the parts of the molecular simulation that benefit most from its unique attributes. Everything else is handled by traditional computers.

As this was a proof-of-concept for quantum computing, the team tested three approaches with VQE: unitary coupled-cluster singles and doubles (UCCSD), unitary coupled-cluster generalized singles and doubles (UCCGSD) and k-unitary pair coupled-cluster generalized singles and doubles (k-UpCCGSD). As well as comparing the quantitative results, they compared quantum resources necessary to perform the calculations accurately with classical wavefunction-based approaches. They found that k-UpCCGSD produced similar results to UCCSD at lower cost, and that the results from the VQE methods agreed with those obtained using classical methods—like coupled-cluster singles and doubles (CCSD) and complete active space configuration interaction (CASCI). 

Although not quite there yet, the researchers concluded that quantum-based computational chemistry on the kinds of quantum computers that will be available in the near-term will play “a vital role to find potential materials that can enhance the battery performance and robustness.” While they used a 20-qubit simulator, they suggest a 400-qubit quantum computer (which will soon be available) would be necessary to fully model the Li2Co2O4 and Co2O4 system they considered.

All this is part of Ford’s attempt to become a dominant EV manufacturer. Trucks like its F-150 Lightning push the limits of current battery technology, so further advances—likely aided by quantum chemistry—are going to become increasingly necessary as the world moves away from gas burning cars. And Ford isn’t the only player thinking of using quantum to edge it ahead of the battery chemistry game. IBM is also working with Mercedes and Mitsubishi on using quantum computers to reinvent the EV battery. 

The post Ford used a quantum computer to explore EV battery materials appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Heavy EVs need strong tires—which means reinventing their wheels https://www.popsci.com/technology/ev-tires/ Mon, 19 Dec 2022 23:00:00 +0000 https://www.popsci.com/?p=500342
Pirelli Elect EV tires
Pirelli Elect EV tires. Pirelli

EVs are heavier than their gas-powered cousins. Designing tires for them is a unique challenge.

The post Heavy EVs need strong tires—which means reinventing their wheels appeared first on Popular Science.

]]>
Pirelli Elect EV tires
Pirelli Elect EV tires. Pirelli

The electric vehicle spotlight is typically trained on range and charging speed, along with battery makeup and sustainable materials. However, EV news rarely gives enough credit to one unsung-but-critical factor: tires. EVs are heavier than their gas-powered cousins, and as a result, the electric motors generate more on-demand torque, which puts additional pressure on the vehicles’ rubber shoes. Tires made for EVs use special tread compounds and patterns and are engineered to take on the heavier components, as well as more torque strain.

Reducing tire drag

Companies like Pirelli, Goodyear, and Continental have actively ramped up research and development of tires designed specifically for EVs. Rolling resistance is an important aspect of tire construction for EVs, as it directly affects both range and ride quality. Continental Tires defines rolling resistance as “the amount of energy a tire uses over a defined distance.”

Reducing rolling distance requires a shallower tread depth and narrower footprint, along with harder tread compound and stiffer sidewalls. By decreasing tire “squirm,” or excess movement, EV-specific tires are designed to improve efficiency – or more aptly, to avoid losing energy.

“Rolling resistance coefficient is always the issue when designing for EVs,” Pirelli Chief Technology Officer Ian Coke told PopSci. “You have to understand the compromise between lowering the rolling resistance to match range and maximize performance. It’s a big challenge.”

Building from scratch

Two years ago, a two-woman team driving a pre-production Rivian R1T pickup truck competed in the Rebelle Rally, a grueling 1,500-mile off-road competition. The R1T had been in production for several years at that point, but testing it out in a tough desert environment at the rally laid bare its strengths and weaknesses. Emme Hall, the R1T driver, found one of those strengths to be the custom-designed Pirelli Scorpion all-terrain tires.

“The Scorpions are usually set to 48 [pounds per square inch] for street use, but I kept it around 35 psi most of the time, airing down to 20 psi when I hit the soft sand of Big Dune, Dumont Dunes and Glamis,” Hall wrote for CNET. “These Scorpions took everything I could throw at them without a hiccup.”

The key to a safer, more efficient, and quieter ride, Pirelli’s Coke says, is to create the tires for a new EV from the ground up. EV drivers tend to wear out their tires an average of 20 percent faster than those operating a traditional gas-powered vehicle, so using the same tires non-EVs do could cause a fair amount of hassle, as they must be more frequently exchanged. 

“It’s very important to us that the tires we provide are tailored to the vehicle itself,” Coke said. “[A manufacturer] program starts at least three years before it’s launched. We’re designing the tires as the vehicle is being designed.”

[Related: As electric vehicles get bigger and faster, they also get more dangerous]

And those tires are built with a prescribed air pressure in mind for that particular vehicle. Altering that formula could cause skids, slides, and worse. Coke told Forbes that “while increasing air pressure in a tire does lower rolling resistance…it also reduces the tire’s ability to grip at the same time, which can be a dangerous trade in adverse conditions, when hard braking or when cornering loads push traction to the limit.”

What’s next? 

Rivian isn’t the only EV maker with bespoke tires; some Tesla models and the new Volkswagen ID.3 wear original equipment tires formulated by Continental. There are countless other examples in the works or already on the market also. 

For example, GMC’s Hummer EV rides on specially engineered 35-inch Goodyear Wrangler Territory tires made for both on- and off-road performance. While we know that GMC will introduce the Sierra EV pickup in 2023, we don’t know what kind of tires it will have. The brand has indicated that the new Sierra EV will include the same CrabWalk feature as the Hummer EV, a GMC-exclusive feature that syncs the turn and angle of the rear and front wheels, allowing diagonal movement of the vehicle at low speeds. That combination of movement and weight will certainly require rubber shoes that can handle the stress as well as those on the Hummer EV or Rivian R1T.

In the meantime, companies like Goodyear and Michelin are working toward the next EV frontier: airless tires. These types of tires use a unique system of spokes to support the outer ring instead of air, effectively eliminating flat tires Whether these can support EV heavyweights is still in question, but the sustainability factor is attractive, as airless tires require fewer replacements.

The post Heavy EVs need strong tires—which means reinventing their wheels appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
As electric vehicles get bigger and faster, they also get more dangerous https://www.popsci.com/technology/electric-vehicle-dangerous/ Fri, 16 Dec 2022 02:00:00 +0000 https://www.popsci.com/?p=499165
Electric Vehicles photo
GM

EVs are getting quick—but maybe too quick for their weight class.

The post As electric vehicles get bigger and faster, they also get more dangerous appeared first on Popular Science.

]]>
Electric Vehicles photo
GM

This article was originally featured on The Drive.

One of the most satisfying feelings in an electric vehicle is instant torque. Us car lovers crave the feeling of being pressed back into our seats, and while a high-powered internal-combustion car gives that feeling, so does a hyper-efficient EV.

Instant torque can also translate into very quick acceleration. In fact, we’re seeing battery-powered vehicles achieve supercar-level zero-to-60 MPH sprints despite tipping the scales two or three times heavier than gasoline-powered exotics. While this can be fun for the driver and vehicle occupants, it’s becoming clear that these bloated EVs easily could pose a danger to other cars and pedestrians on the road—and no regulators have stepped up to tackle these problems yet.

The 2022 Hummer EV’s electric motors generate 1,000 horsepower and 1,200 pound-feet of torque—that’s enough power to propel the 9,100-pound vehicle from zero to 60 MPH in just three seconds. Consequently, a Lamborghini Aventador LP 780-4 Ultimae takes around 2.8 seconds at just over one-third of the weight. In either case, that’s a lot of speed very quickly, but in the event of a crash, the Hummer generates more than 2.5 times the force at 60 MPH than the Aventador.

It’s hard to say how often supercar owners actually crash their vehicles. According to Automotive News, safety officials don’t have data corresponding to supercar crashes, but information on high-performance motorcycles is available. In fact, most crashes for sport bikes occur within the first 120 days of ownership. Perhaps there’s some correlation to the number of news stories that show new owners crashing high-performance cars within hours or days of buying them.

A prime example is YouTuber Edmond Mondi. Several weeks ago, Mondi posted a video to Instagram showing the Hummer EV’s supercar-like acceleration from a standstill launch. The video generated a bit of controversy given that it was filmed from the driver’s seat while the Hummer was barreling towards multiple lanes of cars in stopped traffic. Weeks later, we reported that Mondi totaled his Hummer EV just hours after picking it up from the dealership, as revealed in a later-published YouTube video.

Electric Vehicles photo

With rapid acceleration and massive weight, it’s fairly obvious that there will be crashes from drivers, likely both new and seasoned. How deadly those crashes will be is still something that researchers will need to gather data to determine.

One study by the National Bureau of Economic Research found that being killed in a car accident is a roughly 1-in-500 chance. The same study determined that being in a crash with a vehicle 1,000 pounds heavier than your own increases the risk of baseline fatality by 47%. It’s not immediately clear how this scales with modern battery-electric vehicle weights (for example, a 3,300-pound Toyota Camry being involved in an accident with a Hummer EV—a difference of 5,800 pounds).

Electric Vehicles photo
Weight and acceleration can both affect the overall force of a vehicle.

Realistically, it’s hard to imagine a solution to what is potentially a public safety problem except for regulation. Sure, automakers can offer in-car warnings or geofence speed and performance to racetracks or certain designated zones (like the Japan-market Nissan GT-R in the late 2000s), but hackers will undoubtedly treat it like a cat-and-mouse game to defeat these restrictions. Realistically, it’s inconceivable to think that an automaker would willingly cripple the selling points of their performance cars in the name of safety.

Consumers want the option to go fast. It’s a sexy selling point of a sports car and akin to having the option of drinking alcohol, smoking cigarettes, and performing myriad other tasks that pose risks to the user’s own health. The problem is that a huge 4.5-ton EV stretching its legs at a full sprint on the public road poses a threat to other drivers, passengers, and pedestrians. No automaker or consumer wants to have more government oversight on a product they manufacture or own—I certainly don’t. But at some point, we have to accept that there will be people who will die because of product misuse in the name of exhilarating acceleration, and even one will be one too many.

The post As electric vehicles get bigger and faster, they also get more dangerous appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
UberEats is rolling out a fleet of self-driving delivery robots in Miami https://www.popsci.com/technology/uber-cartken-delivery-robot-miami/ Thu, 15 Dec 2022 20:00:00 +0000 https://www.popsci.com/?p=499194
Two Cartken robotic delivery vehicles traveling along a sidewalk in a line
UberEats now can deliver via these little robots in Miami. Cartken

These little robots are venturing out of a university setting for the first time.

The post UberEats is rolling out a fleet of self-driving delivery robots in Miami appeared first on Popular Science.

]]>
Two Cartken robotic delivery vehicles traveling along a sidewalk in a line
UberEats now can deliver via these little robots in Miami. Cartken

On Thursday, Uber announced a partnership with the robotics manufacturer Cartken that will send a fleet of miniature self-driving robots into Miami, Florida. These little vehicles won’t be driving people though—just snacks.

Based in Oakland, California, and started by a team of former Google engineers, Cartken already deploys their automated, six-wheeled delivery vehicles delivering food and other small items across multiple college campuses. But as The Verge notes, Uber claims this will be the “first formal partnership with a global on-demand delivery app beyond” universities.

[Related: Uber’s latest goals involve more delivery and more EVs.]

Cartken’s line of small, fully electric, automated delivery vehicles are manufactured by auto supplier Magna, and can carry around 24 pounds of items in its cargo storage. While they only clock in at speeds slightly slower than pedestrians, an embedded camera system allows the robots to maneuver around obstacles and adjust in real-time to the environment around them. Each Cartken robot can deliver within a several mile radius depending on battery change, which makes them ideal for relatively small areas such as school campuses and the Miami’s Dadeland commercial shopping complex, where they are making their UberEats debut on Thursday before potential expansions throughout the county and in other cities.

Uber has openly pursued automated driving and delivery services for years now, although the path towards accomplishing this goal has been anything but smooth. In 2018, a self-driving Uber car in Arizona struck and killed a pedestrian, putting at least a temporary halt to the company’s aims of fully automating fleets. Earlier this month, the company appears to have restarted the plans via the introduction of self-driving taxi options in Las Vegas alongside expansion plans for Los Angeles —although a human safety driver will still remain behind the wheel for the time being.

[Related: Study shows the impact of automation on worker pay.]

While potentially convenient for hungry consumers, the Uber-Cartken teamup belies wider industry aims of increased automation. A diminished need for human labor is directly related to cost efficient advances in artificial intelligence and robotics. Corporations such as Uber are literally banking on this automation to be cheaper and faster than its current employees. The Cartken fleet may be cute to look at roaming around sidewalks and campuses, but every additional robot is potentially one less delivery job for a gig economy worker already strapped for cash.

Earlier this year, Uber also announced a partnership with Nuro, makers of a much larger, street traveling autonomous vehicle capable of delivering roughly 24 bags of groceries at a time to customers in Houston, Texas, and Mountain View, California.

The post UberEats is rolling out a fleet of self-driving delivery robots in Miami appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
A new battery recycling plant could power 1 million EVs per year https://www.popsci.com/technology/south-carolina-ev-battery-recycling-plant/ Thu, 15 Dec 2022 18:15:00 +0000 https://www.popsci.com/?p=499000
Rendering of Redwood Materials' electric vehicle battery recycling campus in South Carolina
A rendering of the finished facility in South Carolina. Redwood Materials

Once completed, Redwood Materials' facility in South Carolina could help greatly bolster domestic EV production.

The post A new battery recycling plant could power 1 million EVs per year appeared first on Popular Science.

]]>
Rendering of Redwood Materials' electric vehicle battery recycling campus in South Carolina
A rendering of the finished facility in South Carolina. Redwood Materials

A 600 acre, 1,500 employee electric vehicle battery recycling facility will soon break ground outside of Charleston, South Carolina, providing a major boost in clearing one of the biggest hurdles currently facing EV adoption. Once completed, Redwood Materials’ Battery Materials Campus will break down end-of-life lithium-ion batteries into their raw materials such as copper, cobalt, and nickel within its 100 percent electric factory facilities. From there, new cathode and anode products can be built and subsequently used once again in future EV manufacturing, thus extending material lifespans while lowering overall vehicle costs for consumers.

According to Redwood’s estimates, the campus will eventually be able to provide 100 GWh in recycled components per year—enough to annually power an estimated 1 million EVs—and can eventually scale upwards as demand grows. The startup already has a similar facility in Nevada, which announced its own expansion earlier this year.

[Related: Why solid state batteries are the next frontier for EV makers.]

Redwood’s newest project is located in what is becoming known as America’s Battery Belt—a region stretching from the Midwest to the Deep South increasingly focused on the production of electric vehicles and EV components. Green energy and EV advocates argue that shifting production stateside is crucial for economics, the environment, and human rights. Currently, the vast majority of EV parts such as the rare earth minerals needed for batteries are mined overseas in countries like China, resulting in massive ethical and ecological concerns. As Engadget notes, the company alleges its methods lowers battery component production’s CO2 emissions by around 80 percent when compared to current standard Asian supply chain outputs.

Charleston’s geographic location is a strategic choice, given its ports. As CEO JB Straubel explained in a recent interview with The Wall Street Journal, there currently aren’t enough recyclable EV materials to meet industry demands, and importation is still a necessary step in the process. Straubel estimates that between 40 and 60 percent of its Redwood Materials’ South Carolina facility products will be made from recycled materials.

[Related: You throw out 44 pounds of electronic waste a year. Here’s how to keep it out of the dump.]

One of the biggest hurdles in electric vehicle adoption is the e-waste generated from depleted “end-of-life” lithium-ion batteries. Thankfully, industry pushes such as Redwoods’ latest venture furthers our capability of breaking down these power sources and recycling the bulk of what would otherwise be relegated as potentially harmful trash. Construction on South Carolina’s Battery Materials Campus is set to begin early next year, with an eye to begin initial recycling processes by the end of 2023.

The post A new battery recycling plant could power 1 million EVs per year appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Ram’s electric pickup concept will be revealed in less than a month https://www.popsci.com/technology/ram-revolution-concept-electric-pickup-truck/ Fri, 09 Dec 2022 15:00:00 +0000 https://www.popsci.com/?p=496705
The 2022 Ram 1500 pickup. An electric Ram pickup will be unveiled early next year.
The 2022 Ram 1500 pickup. An electric Ram pickup will be unveiled early next year. Stellantis / Ram

There's a Ford electric pickup truck and a Chevy one, too. So what can we expect from the Ram Revolution Concept?

The post Ram’s electric pickup concept will be revealed in less than a month appeared first on Popular Science.

]]>
The 2022 Ram 1500 pickup. An electric Ram pickup will be unveiled early next year.
The 2022 Ram 1500 pickup. An electric Ram pickup will be unveiled early next year. Stellantis / Ram

Now in its fifth generation, the Ram 1500 pickup truck was originally born as the Dodge Ram in 1981. It made the moniker switch in 2010, and soldiered on as your average full-size pickup truck until it was treated to a full makeover for model year 2019, earning accolades the brand hadn’t seen before. In sales numbers, the Big Three truck manufacturers compete for customer dominance, with the Ford F-150 handily leading the market and the Chevrolet Silverado and Ram 1500 trailing behind in a relatively distant second and third.

In that order, the automakers have released their versions of all-electric pickup trucks. Ford launched its F-150 Lightning EV last year, and Chevy plans to start selling its Silverado next year for model year 2023. Meanwhile, Ram is hyping its version of a full-size electric truck, aiming to unveil the Ram Revolution Concept on January 5 at the Consumer Electronics Show in Las Vegas, where Stellantis CEO Carlos Tavares will take the stage for the keynote.

What we know so far

One of the first questions that pickup truck tire-kickers ask is how much the vehicle can tow and haul. Ram hasn’t answered that query definitively yet, but CEO Mike Koval enthusiastically set the bar high, saying the Revolution would “push past” its competitors’ “core attributes,” like hauling and towing. Considering the F-150 Lightning claims 10,000 pounds of towing capacity and the Silverado EV has advertised matching numbers, it’s almost a certainty that Ram is shooting to beat that. 

As for other automakers, Tesla says its Cybertruck will tow up to 14,000 pounds, but after three years with not a single Cybertruck on the road, it’s difficult to muster the energy to buy in.

Rivian is the current outlier with its R1T offering an estimated 11,000 pounds of towing capacity. On the surface, the R1T seems to be significantly more expensive than the Lightning or Silverado EV, with a starting price of $67,500. Ford put together a similar strategy for its F-150 Lightning, starting at just under $54,000 and soaring to nearly $83,000 with the extended range battery that improves both towing and distance between full charging. And, while the Silverado EV costs $42,000 for its Work Truck variant, that’s a stripped-down model that won’t appeal to many; the cost is estimated to jump up to $75,000 for the well-equipped LTZ trim. 

As for range, Ram says the Revolution will achieve 500 miles on a full charge, which is more than the Lightning (230-320 estimated miles), the Silverado EV (up to 400 miles) and the Rivian R1T (314 miles). Tesla claims the Cybertruck will get 500 miles of range, but imaginary trucks can’t travel far. 

Where it could set itself apart

A new teaser video of a clay model appears to show a two-door single-cab truck, which is different from the Lightning, Silverado EV, Hummer EV pickup, Cybertruck, and R1T, all of which are four-door vehicles. However, spy photographers captured pictures of the Revolution mocked up with a crew cab and long bed, which suggests that perhaps the Ram 1500 BEV (battery electric vehicle) will be available in a variety of body styles like the gas-powered version. 

Stellantis reporting specialists Mopar Insiders snapped the spy photos, and the reporter developed some assumptions based on what the pictures show. Referencing Stellantis’ EV Day 2021 event, Mopar Insiders recalled a claim that vehicles built on the new EV-ready frame architecture will include individual electric drive modules (EMDs) capable of 330 kilowatts (443 horsepower) each and that each frame can accommodate up to three of those modules. Considering the Lightning uses two EDMs and the GMC Hummer EV uses three as well, Insiders believes a Ram Revolution with three motors can generate up to 990 kilowatts, or more than 1,320 horsepower. (That’s a lot.) 

On top of that, Koval said the Revolution will be enhanced by a gasoline or diesel-fueled range extender. You can think of a gas-powered range extender as the exact opposite of a hybrid, which harnesses the power of an electric motor to boost the initial torque. Ram has experience with hybrids, as it launched its eTorque mild hybrid system in 2019 on the Ram 1500. Ram’s eTorque replaces the traditional alternator and adds more functionality for a quieter ride, improved fuel economy, and better towing and hauling capability.  

The Consumer Electronics Show, or CES, has become a popular platform for technology and vehicle reveals; in fact, GM CEO Mary Barra unveiled the Chevrolet Silverado EV at the 2021 event. While Ram is trailing the Silverado by a year, that may not be a detractor for the Stellantis brand considering all-electric trucks are still such a new entity. Truck buyers are still skeptical of towing numbers and range when it comes to EVs, and the uptake is going to take more time. By the time the Revolution arrives in dealerships in 2024, the market (and the beleaguered supply chain, which has struggled to manufacture the necessary chips that run the electronics systems) will hopefully be ready.

The post Ram’s electric pickup concept will be revealed in less than a month appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
The biggest automotive innovations of 2022 https://www.popsci.com/technology/the-best-automotive-innovations-2022/ Fri, 02 Dec 2022 16:00:00 +0000 https://www.popsci.com/?p=490450
Best automotive innovations of 2022
It's the Best of What's New. Rimac

An EV that can go 747 miles on a charge, a thrilling new Corolla, and more automotive innovations are the Best of What's New.

The post The biggest automotive innovations of 2022 appeared first on Popular Science.

]]>
Best automotive innovations of 2022
It's the Best of What's New. Rimac

We may be decades away from replacing fossil-fuel-powered vehicles with a fully electric fleet, but at the same time, EVs have continued their impressive gains on US roadways. But the most innovative companies in the automotive industry are looking beyond just batteries and charging infrastructure. They’re making the most of what we’ve got while doing the heavy lifting that goes unnoticed: Making vehicles lighter, more aerodynamic, more useful, and less wasteful. They’re also giving us faster and extremely entertaining cars—and we’re here to honor their technical brilliance.

Looking for the complete list of 100 winners? Check it out here.

Grand Award Winner

Vision EQXX by Mercedes-Benz: The slipperiest EV

Mercedes

Learn more

This year, Mercedes-Benz introduced a one-off, world-beating car with an altruistic purpose: To make the most out of the heavy batteries at the core of the growing EV fleet. The numbers for the Vision EQXX are otherworldly for an EV: 3,900 pounds of car and 747 miles on a single charge. It’s slow by EV and gasoline standards, yet modesty was the mission. So how did they do it? Here’s one trick: Its body can extend its sweptback tail at speed another eight inches, helping cut drag by half that of a normal sedan or crossover. To further augment efficiency, Mercedes-Benz opted for a Formula 1 subframe, magnesium wheels, tiny side-view mirrors, and a 100-kWh battery that the company claims is half the size and almost a third lighter than the powerpack in their production EQS sedan. Reducing mass and improving efficiency are old mechanical concepts that all manufacturers need to revisit if EVs are to succeed in the gasoline era. For that to happen, however, the breakthroughs must be this dramatic. Though it’s only a concept, the Vision EQXX may be the spark that ignites that reality.

Uconnect 5 by Jeep: Putting the passenger in command

Large SUVs typically allow the people in the back to zone out and watch whatever’s on the screens in front of them. But in the Jeep Grand Wagoneer, all the fun is in the shotgun seat—and won’t distract the driver. The Uconnect 5 infotainment system can run up to eight independent displays, including a 10.3-inch touchscreen built into the passenger-side dash. To reduce distraction, Jeep tints the display so it’s a faint glow to the driver while still looking bright to the passenger. You can connect an Xbox to the HDMI port, stream a ton of titles with the built-in Amazon Fire TV, control the 360 cameras, and set the navigation system by sending a chosen route to three of the driver displays. Best of all, there’s no ugly screen-mounting hardware to clutter the polished black dash.

Pilot Sport EV by Michelin: When tires go electric

Michelin

Learn more

Electric vehicles—performance models especially—put the strain of extra mass and torque onto their tires. The Pilot Sport EV is the first of a growing segment of EV-specific treads designed to improve both range and grip. Typically, a manufacturer can increase range by reducing the rolling resistance—the slowing effects of friction—at the expense of grip. These Michelins find balance by putting different parts of the tire in charge of handling torque and mass: The center of the tire has a grippier compound to take the brunt of an EV’s torque, while the shoulders are optimized for lower rolling resistance. It’s a mix they honed over the last eight years on Formula E racers. Compared to the company’s gold standard, the Pilot Sport 4S, the Pilot Sport EV increases range by as much as 20 percent with nearly the same level of traction. 

Android Automotive OS  by Google: A car OS from an OS company

Google

Learn more

Google’s suite of car-specific software has been mediocre for the past several years. Android Auto projects a limited array of Android apps onto a car’s infotainment display; then there’s regular old Android, which is tablet software that many automakers modify for their vehicles. In either instance, their interfaces feel half-baked. Enter Android Automotive OS, which is Google’s first operating system developed specifically and only for cars. Through it, the voice assistant, maps, keyboards, and the Play store run faster and function more intuitively than a smartphone connected to Android Auto or Apple CarPlay ever could. Thanks to it, the experience on the latest Volvo, Polestar, and Chevrolet vehicles is dramatically better than anything those automakers had ever coded themselves.

GR Corolla by Toyota: A three-cylinder powerhouse

Toyota

Learn more

In 2022, it’s rare to see automakers develop all-new gasoline engines. To see Toyota craft an engine with as much output per liter as a Bugatti Chiron? That’s a cosmic event. The G16E-GTS spews 300 turbocharged ponies from three tiny cylinders displacing only 1.6 liters. This is the ferocious heart of the 2023 GR Corolla, an ordinary-looking hatchback. On the Morizo Edition, the turbocharger pumps 26.3 PSI of air through the intake—a monstrous amount that the fortified engine block can handle. First offered overseas in the smaller GR Yaris, this engine transforms the humdrum Corolla—the world’s best-selling car of all time—into an everyday sports car. It’s comfortable, practical, gets 28 mpg on the highway, and will absolutely embarrass a Porsche on a twisty road. 

FC1-X by Nitro: Rally racing at its most extreme

The FC1-X is what happens when motorcycle stuntman and record-breaking rally driver Travis Pastrana and a Swedish race team agree that Red Bull’s Rallycross is too slow. The FC1-X is a custom, 1000-horsepower electric car that zaps to 60 mph in 1.5 seconds and can land a 100-foot jump. A major reason: The car’s silicon carbide inverter is a fraction of the size and weight of a typical EV’s inverter—the device that converts the battery’s DC output to AC for the motors—and the battery can handle major power draws without overheating. It’s unique to Pastrana’s Nitro Rallycross series. As it evolves, FC1-X stands to influence the next generation of EVs—for both the track and the road.

Super Cruise by General Motors: Best hands-free system

General Motors’ Super Cruise strikes an ideal balance between hands-free driving assistance—giving the human operator a break—and safety. Using a network of laser-scanned highways at 10 times the accuracy of a GPS map with a full suite of ultrasonic, radar, and infrared cameras, Super Cruise can operate on more than 400,000 miles of marked US highways, including executing automatic lane changes. Most important, however, is when it won’t operate: Super Cruise will disable the system for the entire drive if the driver looks away for too long, a road is unmapped, the vehicle’s data connection goes dark, or any number of failure points to keep the person behind the wheel engaged. Next up is Ultra Cruise, which promises “door-to-door” hands-free driving, but that may be years away.

Hummer EV by GMC: A maneuverable behemoth

Let’s get this out of the way. From the standpoint of energy consumption, the GMC Hummer EV is wasteful—and, at nearly 10,000 pounds, it’s a behemoth. Its battery pack is twice the capacity of the best Tesla Model S but delivers 80 percent of the EPA-estimated range compared to that vehicle. But underneath this super truck’s extravagance is a mind-blowing method of four-wheel steering. CrabWalk sounds too ridiculous and motion sickness-inducing to be true, but it is: All four wheels can steer the truck diagonally. The rear rims steer in tandem with the front at up to 10 degrees, enough to let this massive vehicle dance sideways like a crustacean that needs to parallel park, moving up to 25 mph. 

Nevera by Rimac: The most powerful production car

A Croatian scientist who converted his broken BMW to run on electricity is now, at age 34, the CEO of a hypercar company that’s fresh off a merger with Bugatti. Mate Rimac’s dream machine, the 1877-horsepower Nevera, has four electric motors and the stiffest carbon fiber monocoque—that’s a combination of the car’s frame and body—around. It’s the world’s fastest EV: 258 mph. Car enthusiasts with $2.4 million to blow will soon show us the evidence. But more importantly, Rimac’s other partners, which include Hyundai and Porsche, will benefit from the company’s EV expertise in future cars costing a fraction of that price.

MotoE by Ducati: The hottest electric racing bike

Ducati

Learn more

The heavy batteries that can be packaged easily in a car are harder to incorporate into a motorcycle that needs to balance. Instead of allowing a bulky, off-the-shelf battery pack to dictate the bike’s design, Ducati designed the battery on its MotoE—which the entire field of the 2023 FIM MotoE World Cup will ride—so that it functions as an integral part of the bike’s central frame instead of a bulky add-on. Two separate cooling systems (one for the 18-kWh battery, the other for the 150-hp motor and inverter) ensure the MotoE can sustain 171 mph and then pit for a recharge without needing to cool down. It might not be the first electric racing bike, but it is the first such bike that customers will ultimately want to ride on the road. 

The post The biggest automotive innovations of 2022 appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
The most helpful emergency services and defense innovations of 2022 https://www.popsci.com/technology/best-emergency-services-defense-innovations-2022/ Fri, 02 Dec 2022 14:00:00 +0000 https://www.popsci.com/?p=489576
Best of What's New 2022 Emergency Services and Defense
It's the Best of What's New. L3Harris

A way for lost hikers to call for help, a rechargeable fire truck, and more innovations are the Best of What’s New.

The post The most helpful emergency services and defense innovations of 2022 appeared first on Popular Science.

]]>
Best of What's New 2022 Emergency Services and Defense
It's the Best of What's New. L3Harris

The past year has been marked by serious challenges, from the ongoing climate emergency, a subsequent increase in extreme forest fire frequency, and the devastating war in Ukraine following Russia’s invasion. But we’ve also seen true innovation in the field of crisis response. More exact location systems will help emergency services find people in trouble quicker. Better respirator technology is rolling out, designed to help wildland firefighters breathe a little easier. And fire trucks are finally starting to go electric. This year’s best emergency services and defense innovations offer paths out of tight spots, aiming to create a safer future—or at least a better way to handle its myriad disasters.

Looking for the complete list of 100 winners? Find it here.

Grand Award Winner 

Wildland Firefighter Respirator by TDA Research: A lightweight, field-rechargeable respirator for forest firefighters

Forest fire fighters need a lightweight wearable respirator to protect them from inhaling smoke. The Wildland Firefighter Respirator, by TDA Research, uses a hip-mounted pump to pull air through a HEPA filter, channeling it to a secure but loose-fitting half-mask (a helpful feature for people who haven’t had the chance to shave while in the field). A sensor in the system detects air flow direction, letting the pump only blow at full strength when the user inhales. Importantly, the device weighs just 2.3 pounds, which is only about 10 percent the weight of a typical urban firefighting Self Contained Breathing Apparatus. About the size of a 1-liter water bottle, the respirator is powered by a lithium-ion battery pack. To recharge in the field or away from a generator, that pack can also draw power from 6 AA batteries. Bonus: Even though it was designed for safety professionals, the device could also become civilian protective gear in fire season.

Connect AED by Avive: Connecting defibrillators to those in need, faster

Avive’s Connect AED (Automated External Defibrillator) is designed to be a life-saving device that’s also smart. The devices can automatically do daily maintenance checks to ensure they can perform as needed, thanks to WiFi, cellular, bluetooth, and GPS. Plus, with that connectivity, 911 operators could alert nearby Connect AED holders to respond to a called-in cardiac arrest, saving time and possibly someone’s life. Once a person has been defibrillated, Connect’s connectivity also lets emergency room doctors see data the device collected, such as the patient’s heart rhythm, as well as the device’s shock history, complete with timestamps. The Connect AED also has a backpack-like form factor and touch screen for intuitive use.

Scalable Traffic Management for Emergency Response Operations by Ames Research Center: Letting drone pilots clear skies for aerial emergency vehicles 

Ames Research Center

Learn More

The sky above a forest fire can be a dangerous, crowded place, and that was before forest fire fighters added drones joined the mix. Developed by NASA, the Scalable Traffic Management for Emergency Response Operations project (STEReO) is developing tools for managing the complicated airspace above an emergency. In the spring of 2022, a NASA team field-tested a STEReO’s suitcase-sized prototype device, called the UASP-Kit, to monitor drones safely in the open airspace around prescribed burns. By tracking transponders on crewed aircraft, the UASP-Kit can play a sound through tablet speakers, alerting drone operators when helicopters and planes fly close to where they are operating. That hopefully lets drone pilots get their equipment to safety without risking aerial collision.

Locate Before Route by AT&T: Pinpointing the emergency 

When a person in an emergency calls 911 for help, that call is routed, based on its location, to the closest 911 operator. For cell phones, that meant matching the call to the nearest tower and hoping it sent the call to dispatch in the right county. But in May 2022, AT&T announced the nationwide rollout of a better system. Leaning on the improved location services on iOS and Android phones, AT&T’s Locate Before Route feature can pinpoint the location of the emergency call within 50 meters, sometimes even as precisely as 15 meters. This better location information should allow the call to be routed to the best dispatch center, ideally helping responders arrive faster. That data can only be used for 911 purposes, and helps first responders get where they’re needed quickly, nationwide.

GridStar Flow by Lockheed Martin: Helping to power defense with renewable energy

Lockheed Martin

Learn More

The US military is a massive consumer of fossil fuels, but if it wants to use more renewable energy, it needs a way to store that electricity to power vital functions. GridStar Flow, developed by Lockheed Martin for the US Army, is a massive battery complex that takes advantage of the space of Colorado’s Fort Carson to go big. It will store up to 10 megawatt-hours of juice, thanks to tanks of charged electrolytes and other equipment. Construction at Fort Carson broke ground on November 3, but the company has already tested out a smaller flow battery in Andover, Massachusetts. Using electrolytes that can be derived from commodity chemicals, GridStar Flow offers a power storage and release system that can help smooth the energy flow from renewable sources.

Volterra Electric Firetruck by Pierce: A more sustainable, quieter fire truck

Pierce

Learn More

Fire trucks are big, powerful vehicles, but they run on diesel, a polluting fossil fuel. The Pierce Volterra truck can deliver all that power on an electric charge, and it can also run on diesel fuel if need be. Already in use with the Madison, Wisconsin fire department, but with contracts to expand to Portland, Oregon and Gilbert, Arizona underway this year, the Volterra has enough battery power for a full day as an electric vehicle. The electric power helps complement a transition to renewable energy, but it also comes with immediate benefit to the firefighters: the vehicle doesn’t spew exhaust into the station. The quiet of the electric engine also lets firefighters coordinate better on the drive, and can help cries for help be heard when the responders arrive on site.

Vampire Drone by L3Harris: Taking down drones from kilometers away

L3Harris

Learn More

Drones are increasingly a part of modern battles, seen in wars across the globe but especially with Russia’s invasion of Ukraine, with both countries using a range of uncrewed aircraft to scout and fight. In August 2022, the Department of Defense announced it would send a new tool to aid Ukrainian forces as a way to counter Russian drones. Made by L3Harris, the Vehicle-Agnostic Modular Palletized ISR Rocket Equipment (VAMPIRE) system is a rocket launcher and sensor kit that can be mounted to a range of vehicles, providing a means to damage and destroy drones at a range of at least three miles. The laser-guided rockets, directed by a human operator, explode with a proximity fuse, making near misses into effective takedowns. 

Emergency SOS via satellite by Apple: Locating lost hikers with satellites

For hikers lost in remote parts of the United States and Canada, calling for help means hoping for cell phone coverage, or waiting for a serendipitous rescue. But Apple’s Emergency SOS via Satellite, announced September 2022, will let people with an iPhone 14 transmit emergency messages via satellite, provided they can’t first establish a cellular connection. Texters will have a tap-through menu to create an information-dense but data-light report, and provided trees or mountains don’t block the signal, they can transmit crucial information, like what kind of injuries someone has sustained. With a clear view of the sky and fifteen seconds, a cry for help can reach space and then, even better, rescuers on Earth.

The post The most helpful emergency services and defense innovations of 2022 appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Fiat wants its small new EV to be a luxurious ‘fashion accessory’ https://www.popsci.com/technology/fiat-500e-north-america/ Mon, 28 Nov 2022 22:30:00 +0000 https://www.popsci.com/?p=492510
A 500e concept vehicle.
A 500e concept vehicle. Fiat

In an era of enormous vehicles, the pint-sized 500e will be a charming addition to North American roads when it returns in 2024.

The post Fiat wants its small new EV to be a luxurious ‘fashion accessory’ appeared first on Popular Science.

]]>
A 500e concept vehicle.
A 500e concept vehicle. Fiat

Scrappy Italian brand Fiat has risen from the proverbial ashes once again. Launched way back in 1899, Fiat established itself in the US in 1908 and has weathered storms through the two world wars, twice departing the American market to regroup. Now a subsidiary of auto conglomerate Stellantis, which also owns brands such as Jeep, Dodge, Chrysler, Ram, Maserati, and Alfa Romeo, Fiat is finding its footing with an expansion of its small-car lineup. Only this time, it’s as an EV manufacturer. 

Seeing an opening with the departure of the Ford Fiesta from the market this year, Fiat showcased a trio of super-chic 500e models mocked up with designer-brand interiors at the LA Auto Show on November 18. The ultra-compact, Euro-stylish Fiat 500 has always been adorable and represents la dolce vita (“the sweet life” in Italian) that Americans find charming. In EV form as the 500e, its appeal expands exponentially. 

Lavishly festooned with design elements from luxury brands Giorgio Armani, Kartell, and Bulgari, the 500e models on display were intentionally set up to lay out the brand’s direction and pricing structure. Fiat boss Oliver François told Autocar UK that making small electric cars affordable is a challenge, but he’s tapping into all the resources of its parent company to leverage experience and manufacturing synergies. 

“The only super-profitable, easy way to go electric is to make it super-premium, because you embed the horribly high cost of batteries into something that is anyway expensive,” François said. 

Fiat called the 500e “irresistibly cool, small and Italian” and a “fashion accessory” in its November 17 press release, indicating the automaker’s branding strategy. Combining the electrification trend with fashion is a bet the brand can win, especially in Europe where small cars are more common. However, in the US, where consumers have been in the middle of a love affair with large SUVs and trucks, these vehicles represent a welcome step in the other direction—if people can be convinced to buy them. 

At some point, we may get an Abarth version of the 500e, too. Following the tracks of its (sadly) now-defunct 124 Abarth, the new 500e Abarth will be a performance-focused option available later on, with no confirmed date currently in place. The result of a glorious partnership with Mazda, the Fiat 124 Spider Abarth was based on the popular MX-5 Miata and shared many of its attributes. However, the 124 Spider Abarth possesses a spunky attitude that reveals itself on the autocross as the back half slips around with a delightful wiggle not unlike the wagging tail of an exuberant dog. The 500e may not have the same swagger and is narrower and taller than its 124 counterpart, but the 500 model has always been equally eager to please in all kinds of driving conditions. Except, perhaps in the snow (unless it’s hard-packed).

In Europe, the 500e is available with a 23.8 kilowatt-hour battery pack good for 100 miles of range or a 42 kWh battery pack capable of 199 miles on a full charge. On the surface, that sounds shockingly inadequate, until you consider that this car is made for the urban environment where owners will be driving it short distances from charger to charger. It’s the right car for the city for short commutes and tight parking, but it may not be the best choice for a road trip. 

According to Consumer Guide’s Tom Appel, gas- and electric-powered versions of the 500 were available in the US between 2012 and 2019, with the caveat that the 500e was offered only in California and Oregon. Appel expects the new Fiat model to be offered more broadly for the 2025 model. The North American 500e will launch officially at the 2023 Los Angeles Auto Show with availability expected in the first quarter of 2024.

The post Fiat wants its small new EV to be a luxurious ‘fashion accessory’ appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
E-bikes could be the future of transit in city centers https://www.popsci.com/technology/e-bikes-future-city-centers/ Fri, 25 Nov 2022 15:00:00 +0000 https://www.popsci.com/?p=490827
bosch ebike
Bosch

Here's what it will take for bikes and e-bikes to be more commonplace.

The post E-bikes could be the future of transit in city centers appeared first on Popular Science.

]]>
bosch ebike
Bosch

At the start of the pandemic nearly three years ago, the number of outdoor activities increased rapidly. Off-roading and overlanding (adventure traveling in a vehicle combined with camping) pursuits have been front and center ever since, and bicycle riding is on an upswing. The Rails-to-Trails Conservancy, a US-based nonprofit that promotes the transformation of unused rail corridors into trails for hiking and biking, says its trail counters showed an average increase in trail use of 51 percent for 2021 compared to 2019. This number continues to expand.

Bike riding isn’t just for outdoor fun, however. Cars and city streets are making room for more cyclists, and e-bikes could help reduce emissions and smog while offering benefits for riders. E-bikes are a less-sweaty way to get around compared to manual cycling since they have an electric motor that can give the  bike a boost. That brutal hill on the way to work? Easy to get up with motorized wheels.

More e-bikes, fewer cars in city centers

Robin Stallings, the executive director of Texas-focused bicycle advocacy and education organization BikeTexas, told PopSci that e-bikes could replace cars in many urban settings.

“We need to at least get some people out of their trucks to make room for the rest of us,” Stallings told NPR. Continuing the conversation with Houston Public Media, he said: “You take up less footprint, less space, you have fewer parking issues [with bikes]. And you save a ton of money on gasoline and car payments and insurance.”

To be clear, e-bikes aren’t motorcycles; the two modes of transport have different rules. Vehicles must fit into one of three classes to qualify as an e-bike: class 1 covers bikes that use pedal assist up to 20 mph; class 2 covers bikes that also include a throttle along with pedals and can travel at speeds of up to 20 mph; and class 3 is an expansion of class 1 with e-bikes that can reach speeds of up to 28 mph. 

Protecting cyclists on the road

According to the Center for Disease Control and Prevention, bicycle trips make up only 1 percent of all trips in the United States, but bicyclists account for more than 2 percent of fatalities involving a motor vehicle. Every year, nearly 1,000 cyclists are killed and more than 130,000 are injured on US roads. The cost impact from health care expense plus lost lives and work productivity is estimated to be around $23 billion.  

Nonprofit bike advocacy organization League of American Bicyclists’ executive director Bill Nesper says US roads weren’t always built to prioritize cars the way they are today. In fact, the first vehicles to use paved roads were carriages and bicycles. Members in the organization have witnessed the evolution since it was founded in 1880, several years before cars became commonplace. It wasn’t until after World War II that our streets became so car-centric, Nesper says. Community groups like Strong Towns call city infrastructure roads “stroads” (street plus road) and are trying to bring more attention to the unsafe conditions it presents for pedestrians and bikes.

“It’s absolutely true that people moving and getting around by foot and by bike is an afterthought, you know, if thought about at all,” Nesper told NPR.

Organizations like BikeTexas and the League of American Bicyclists have successfully lobbied lawmakers to add bike-only lanes to city streets, especially as the number of cyclists increases.

E-bike battery safety critical

Claudia Wasko, Vice President of Bosch eBike Systems Americas, stresses the importance of e-bike battery safety. To this end, she notes that Bosch voluntarily adheres to testing by safety certification company Intertek to the Underwriter Laboratories (UL) 2849 Safety Standard. Intertek gives E-bike companies the UL 2849 certification after carefully examining the electrical drive train, battery, and charger systems.

Bosch’s Kurt Hoy says the manufacturer voluntarily creates components with extra layers of safety beyond the legal requirements and certifications. Bosch competes with the likes of Brose, Shimano, and Yamaha for e-bike market share, and Hoy says it’s critical to look for a product with stringent standards, because there are plenty of companies pairing a substandard motor with a bike and selling it for pennies on the dollar online. Honestly, high-quality e-bikes aren’t cheap; I tested a Tern with a Bosch motor that provided 400 percent assist that retails for about $5,000.

That said, part of what customers are paying for is the safety factor, and cheap e-bikes with poorly maintained or damaged lithium-ion batteries have a much greater potential to catch fire.

Legislation under consideration for e-bikes and batteries

Delivery cyclists swapping batteries between subpar bikes are unknowingly contributing to the risk, and organizations in big cities like New York are considering bans on sales of second-hand electric vehicle batteries along with batteries that haven’t been approved by a nationally recognized testing lab like UL. 

“As e-bikes and e-scooters become more popular, unregulated knockoff parts including batteries and chargers are flooding the market, sometimes with disastrous consequences,” Molly Hurford wrote on Bicycling.com

Companies using multiple safety protocols are highly unlikely to have batteries or chargers that catch fire because each component in the devices is isolated from the others. Bosch, for instance, encases individual lithium-ion cells in its batteries in flame-retardant plastic and tightly seals the compartment to protect it from water.

Charging is a critical point for e-bikes, and Wasko says her company’s battery management system can detect high temperatures and immediately shut down the battery. That protocol protects owners from “deep discharging” and overcharging their e-bikes, which can cause excessive heat that leads to a fire. Responsible brands should comply with laws and certify their systems to voluntary and/or mandatory standards and norms, she says.

With all that added in, e-bikes may be a considerable investment. But for those living in crowded urban areas with limited parking, it could still be a smart one. For one, an e-bike costs a fraction of the price of a car and doesn’t require costly trips to the gas station or electric charging station. The key is to purchase and use bikes that are tested at a qualified testing laboratory, and it should serve for years to come. 

The post E-bikes could be the future of transit in city centers appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Behind the wheel of Volkswagen’s reinvented classic: the electric ID.BUZZ https://www.popsci.com/technology/vw-id-buzz-electric-bus-first-drive/ Wed, 16 Nov 2022 20:02:23 +0000 https://www.popsci.com/?p=487956
The European version of the ID.BUZZ.
The European version of the ID.BUZZ. Dan Carney

We tested out the European version of this nearly mythical vehicle. Here's what it's like to drive.

The post Behind the wheel of Volkswagen’s reinvented classic: the electric ID.BUZZ appeared first on Popular Science.

]]>
The European version of the ID.BUZZ.
The European version of the ID.BUZZ. Dan Carney

Golems, leprechauns, and new-generation versions of the classic Volkswagen bus are all mythical creatures of fantastic legend, but unlike the others, at long last, the Volkswagen ID.BUZZ is a real, drivable machine, and Popular Science got a chance to take one for a spin.

Imagine getting to drive the automotive equivalent of the Loch Ness Monster—that’s the feeling of piloting a real-life all-electric 2023 VW ID.BUZZ down everyday streets, surrounded by mere mortal vehicles. The outrageous throwback styling puts smiles on the faces of passers-by, and it will probably be difficult to stop with one at a public charger without an impromptu Q&A session.

This ID.BUZZ is not a concept, not a pre-production prototype, or any other form of not-real vehicle like that crazy Ford Mustang Mach-E 1400 we track tested. VW has whetted fans’ appetites for a new version of the classic bus with three different concept vans between 2001 and 2016, before finally showing the concept version of the ID.BUZZ production model in 2017.

Our test vehicle, however, is a European-market configuration, so while this ID.BUZZ is not imaginary like a sasquatch, it is also not exactly the vehicle that Americans will be able to buy when they arrive in US dealers.

Instead, this example ($67,000 base price), is a short-wheelbase (118 inches), two-row, five-seat model that we will not get in America. We’ll get a longer model with three rows of seats to hold seven passengers. But otherwise, this test vehicle is an accurate representation of what we can expect to find in dealers. Unfortunately, we will have to wait until 2024 to take one home, as VW focuses on fulfilling orders in Europe, where the van is already on sale.

However, if you want the electric driving experience of the ID.BUZZ without the cool nostalgic styling, hefty price tag, or lengthy wait, the company’s ID.4 crossover SUV delivers much of the same experience today, as both vehicles share their Modular Electric Toolkit (MEB is the German acronym) platform and dashboard controls and displays. 

Volkswagen’s original bus was built on the platform of the Beetle compact car, producing a people hauler that, while much-loved by the Baby Boom generation as it took them to Woodstock, was comically underpowered. Westfalia camper versions sported a pop-up tent on the roof, and later iterations switched from air cooling for the engine to water cooling to help boost power. The VW EuroVan was the last version of the bus imported to the US, ending its run here in 2003. 

And now, finally, electric versions are here.

The European version has a shorter wheelbase than the American one will have.
The base price is $67,000. Dan Carney

What it’s like to drive the ID.BUZZ

The shared platform between the ID.BUZZ and the ID.4 means that there is an 82-kilowatt-hour battery pack (which has a usable capacity of 77 kWh) powering a 201-horsepower electric motor that can accelerate the bus to 60 mph in 10 seconds. The driving experience is similar to that of the ID.4, with a twist shifter to select drive or reverse, numb electric power steering that gives little feeling for the road, and an impressively tight turning circle that makes it easy to pilot the vehicle into parking spaces.

Twist the shifter into Drive and then twist it a second time to set it to the high-regeneration mode that recharges the batteries when you lift off the accelerator pedal. However, while this vehicle delivers much of the one-pedal driving experience, the ID.BUZZ does not come to a complete stop when taking your foot off the accelerator, so in stop-and-go traffic you still have to dance between the accelerator and the brake.

The longer US model will need more space to turn around because of its stretched wheelbase, but the tight turning radius of the Euro-spec version suggests that even a longer model will still be easy to line up for a parking space.

For now, the ID.BUZZ is saddled with the same unfortunate ID.COCKPIT capacitive-touch controls for functions like door locks and volume control that infuriate many drivers in the ID.4. We can only hope that VW will swap those controls for the US model with some decent physical knobs and buttons.

Inside the ID.BUZZ.
Inside the ID.BUZZ. Dan Carney

The cabin in the ID.BUZZ is also reminiscent of the ID.4. While the styling is very different, the hard, unfriendly materials used on most of the interior surfaces are the same. The upholstery in our test vehicle’s seats was a nice combination of throwback plaid fabric on the contact surfaces of the seats that actually touch the occupants and easy-to-wipe-clean vinyl.

What they won’t be able to change is how VW’s engineers matched the MEB platform to the ID.BUZZ body. For one thing, the van is about six inches wider than the ID.4, but the seats seem to have stayed in the same location inside the vehicle. That pushes the doors further from the occupants, making the armrests on the door panels uselessly distant.

To address this, VW has put fold-down armrests on both sides of the van’s front bucket seats. Fold down the outer armrest and you have support right where you want it. Forget to fold it back up when you try to depart the vehicle and you’ll get an unpleasant reminder in the ribs that the armrest is down. Imagine dealing with this every day.

Having the doors far from the van’s occupants has the benefit of leaving plenty of space in the lower door panel for XXL-sized water bottle holders, so the popular Yeti-type giant water bottles will fit in the ID.BUZZ bottle holders.

Another aspect of the MEB platform is that, as an EV platform, it mounts the bus’s 12 battery modules into the floor. As a result, the floor is very high, making entry a challenge, especially for shorter people. The interior grab handles are located above the front door openings, which is normally the preferred location. But the ID.BUZZ has a very high roof in addition to its high floor, potentially putting those handles out of reach for the people who most need them.

The ID.BUZZ’s floor is 22 inches off the ground, but there are cutouts in the door openings that drop it down to 19.5 inches in a bid to provide occupants a toe hold for climbing aboard. In comparison, the Chrysler Town & Country-derived Volkswagen Routan minivan, which was the company’s most recent US market van, had a floor that was 17.5 inches off the ground.

People are used to SUVs being higher from the ground, but those often employ running boards to provide a step in, which the ID.BUZZ does not have. Another thing people are used to is having windows in the rear doors that actually open. This is the norm for SUVs’ hinged rear doors and family vans’ sliding rear doors, but the windows in the ID.BUZZ’s rear doors are fixed closed, which will make it tougher to route emergency fresh air to back-seaters who are feeling motion sickness coming on.

Anyone who is prone to motion sickness is going to especially suffer in the ID.BUZZ, as its very stiff suspension provides a ride that is surprisingly harsh for a vehicle that is carrying 1,000 lbs. of battery ballast in its floor.

The stiff springs cause the ID.BUZZ to crash over every bump and pavement imperfection, which is uncomfortable. But worse is its tendency to rock side-to-side sharply, without the suspension compliance to absorb irregularities that are especially common on the right edge of the pavement.

The test vehicle rolled on the optional 20-inch wheels, which are a feature that designers love. But their low-profile tires lack the sidewall height to provide the air cushion that smooths the ride. Equip an ID.BUZZ with 18-inch wheels and hope the engineers soften the springs for the US market, and this issue could be solved.

The base price is $67,000.
The European version has a shorter wheelbase than the American one will have. Dan Carney

Range of the ID.BUZZ

The ID.BUZZ is electric, of course, so it’s fitting to discuss the electrified aspects of its operation. VW says it will go 263 miles on a full charge and that it will do DC fast charging at a maximum of 170 kilowatts, which is promised to boost the battery from 10 percent to 80 percent in 30 minutes.  

My time behind the wheel on mostly rural two-lane highways produced a driving range that extrapolated to 210 miles in very mild weather. At the same time, I averaged 3.2 miles per kW, according to the computer, which should yield 246 miles if it uses the full 77 kWh, so the van would probably have made it somewhere between 210 and 246 miles if I’d started with a 100 percent charge and ran it until it was dead.

The ID.BUZZ’s on-board charger supports 11 kW of Level 2 AC charging, which is good except that it is hard to find a Level 2 charging station that provides that much juice. Public Level 2 chargers seem to be 6.2 kW or 7.7 kW, but my Chargepoint Home Flex charging station at home promises to deliver up to 12 kW.

Some of the charging details could change before the ID.BUZZ comes to America, along with whatever other changes accompany the added length and extra row of seating. But what surely won’t change is the bus’s legendary status and appeal to drivers, even if it finally sheds the “mythical” appellation.

The post Behind the wheel of Volkswagen’s reinvented classic: the electric ID.BUZZ appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Can software really define a vehicle? Renault and Google are betting on it. https://www.popsci.com/technology/google-renault-software-defined-vehicle/ Fri, 11 Nov 2022 15:00:00 +0000 https://www.popsci.com/?p=486317
Inside Renault's Douai facility in France.
Inside Renault's Douai facility in France. Renault

The project involves a cloud-based "digital twin." Here's what that means.

The post Can software really define a vehicle? Renault and Google are betting on it. appeared first on Popular Science.

]]>
Inside Renault's Douai facility in France.
Inside Renault's Douai facility in France. Renault

Renault was founded in 1898, a long time before computers and the internet. Perhaps that’s what makes it feel a little surprising to find that its current goals are of the high-tech, modern kind. For instance, the Renault Group is working toward being carbon neutral in Europe by 2040, two years after the Stellantis supergroup’s 2038 target. And Renault just minted an expanded partnership with Google for in-vehicle software.

Electronics and over-the-air software updates have exploded in the automotive industry over the last several years. Renault says the partnership is focused on what they call the “Software Defined Vehicle,” which brings more opportunities to update its cars, melding further the relationship between tech and autos. SDV may sound like a new acronym, but it’s a term on the rise as more automakers embrace electrification and find ways to improve efficiency. Companies like Rivian have already been pushing out over-the-air software updates, elevating its status as a tech company with upgrades such as Soft Sand Mode, which appeared like magic on customers’ touchscreens earlier this year. 

The Renault Group is made up of four brands: Renault, Dacia, Alpine and Mobilize. It formed an alliance with Nissan and Mitsubishi Motors in 2016 and has boosted its performance credibility with Formula 1 cars under the Alpine name. The next frontier is the collaboration with Google. “The complexity of the electronic architecture of cars is increasing exponentially, driven by the sophistication of the functionalities and services expected by customers,” said Renault Group CEO Luca de Meo in a press release. “Equipped with a shared IT platform, continuous over-the-air updates, and streamlined access to car data, the SDV [software defined vehicle] approach developed in partnership with Google will transform our vehicles to help serve future customers’ needs.”

Electric Vehicles photo
Renault

Renault says it will “eventually transform its entire operational model to the cloud for more agility, better performance, and higher profitability.” In other words, working with Google means Renault can gather more data about its customers’ driving habits and increase residual value and retention, two of the most important value metrics for automakers. By creating what it calls a digital twin—a digital representation of the physical machine—in the cloud, Google and Renault can use AI to quickly make changes and improvements. The benefit of this type of tech is that changes can be tested and monitored digitally before rolling out the updates to the physical realm, minimizing the chance of error.  

The alignment between the Mountain View, California tech firm and the Boulogne-Billancourt, France-based manufacturer started in 2018. With this announcement, Google becomes Renault Group’s preferred cloud supplier, playing a big role in the automotive conglomerate’s “Move to Cloud” digital transformation.

Renault Group and Google aim to improve the driver experience by predicting maintenance intervals and detecting mechanical issues. SDVs, or software defined vehicles, can also adapt to individual driving patterns and route to EV charging stations and other frequent destinations. 

Renault isn’t alone in this kind of initiative. Tesla has embraced a software-focused strategy for several years and Hyundai is jumping in, vowing that every one of its models will be an SDV by 2025. Renault says its tech focus can also affect insurance models based on actual usage and driving behaviors, which may or may not be a positive thing depending on your driving habits.

The post Can software really define a vehicle? Renault and Google are betting on it. appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
A new silicone tire sealant stops nails in their tracks https://www.popsci.com/technology/self-sealing-tires-bridgestone-dow-silicone/ Wed, 02 Nov 2022 19:00:00 +0000 https://www.popsci.com/?p=483624
If you drive over a nail, hopefully the internal sealant does its job.
If you drive over a nail, hopefully the internal sealant does its job. Dow

Here's how the tech works, and why a new material promises to have sustainability benefits.

The post A new silicone tire sealant stops nails in their tracks appeared first on Popular Science.

]]>
If you drive over a nail, hopefully the internal sealant does its job.
If you drive over a nail, hopefully the internal sealant does its job. Dow

At best, experiencing a flat tire is an inconvenience. Whether you’re pulling out the jack and lug wrench and changing it yourself or waiting for AAA to come to your rescue, it’s a big waste of time. And in the age of electrification, a new level of tire complexity is emerging. Electric vehicles are heavy, and designers are opting to omit spare tires to save weight. Also, batteries take up a lot of real estate, leaving less room to carry a spare. Overall, tire company Bridgestone says that approximately one-third of all new passenger vehicles sold in the US today are not equipped with a spare tire.

Self-sealing technology can mitigate the issue of an absent spare tire, freeing up space and providing a way to lighten the overall weight of the vehicle, which in turn improves total driving range. Global manufacturer Dow has announced the launch of a recyclable silicone self-sealing tire solution that will allow drivers to travel long distances even after a sharp object (like a nail) punctures the outer wall of a tire. It seals the inner layer to retain tire pressure. No lug nut wrenching required. 

Here’s how it works.

Silicone versus other sealants

Giving the driver an opportunity to continue down the road after a puncture offers a major benefit on its own, but what’s more impressive is the sustainability element of silicone sealant, Dow and Bridgestone boast. Bob Lux, Bridgestone Tires’ director for consumer tires, explained to PopSci why silicone is easier to work with than traditional sealants like natural rubber and butyl. An elastomeric polymer used widely in adhesives and sealants, butyl is a synthetic rubber invented in the 1940s. It has been effectively used as a sealant for many years, but companies like Bridgestone are finding that it has a host of challenges that can be solved with silicone. 

“Manufacturers are starting to apply sealant more widely,” Lux says. “It’s not necessarily new as they have been around in some form since the 90s, but it’s much better today because silicone sealant doesn’t cause ride disturbances. In the past, sealants didn’t stay in place and would shift and cause unevenness. Today’s sealants don’t cause that issue.”

Unlike aftermarket sealants like Fix-a-Flat, which are sold in single-use cans, this silicone sealant is applied to the tire for preemptive protection during the manufacturing process. This seals the puncture wound to maintain tire pressure like a superhero absorbs and instantly heals from epic battles on screen.

Ideally, this is how it works.
Ideally, this is how it works. Dow

Sustainable tire practices

From an energy-saving standpoint, silicone is also easier to employ because it’s applied at room temperature. Natural rubber and butyl require heat from the preconditioning phase to application, and heat consumes more energy. Previous sealant materials are sticky, too, which causes a significant problem in the recycling process. Tires are chopped up and recycled in a number of ways to use in roads, as playground material, or back into the tire manufacturing cycle.

“At the end of life for a tire, recycling becomes very difficult with traditional sealant inside,” Lux says. “[Traditional] sealant will gum up the machines that chop up tires for recycling.”

Not silicone, however. Using this kind of new sealant technology could result in a reduction of the number of tires in the landfill, although the silicone needs to be removed first. Then the silicone itself can be recycled separately and used as an industrial lubricant, playground mulch, and more. 

Run flats or sealant?

Speaking of getting a flat, you may have heard of run-flat tires. They have been growing in popularity in recent years, thanks to their convenience factor. Companies like Bridgestone and BFGoodrich manufacture run-flats, which employ reinforced sidewalls to give drivers a way to limp to a safer place to change it out. 

Meanwhile, the repairable area of a tire is approximately a quarter-inch in case of a puncture, and sealant holds the tire together. Basically, run-flats can help in the case of difficult sidewall punctures, while sealant protects the tread area. 

Theoretically, silicone sealant could be paired with run-flats for extra protection, but that combination isn’t a priority for EVs currently. “We see a big impact on range with silicone sealant,” Lux says. “It’s lighter and doesn’t impact rolling resistance.”

Bridgestone will be adding this co-developed sealant into tires for a car manufacturer fitment soon; Lux says it will be released in 2023.

The post A new silicone tire sealant stops nails in their tracks appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Why plug-in hybrid-electric vehicles are worth a look right now https://www.popsci.com/technology/plug-in-hybrid-electric-vehicles/ Tue, 01 Nov 2022 23:00:00 +0000 https://www.popsci.com/?p=483241
The Range Rover Sport PHEV
The Range Rover Sport PHEV. Dan Carney

Positioned between regular vehicles and pure EVs, PHEVs solve several problems.

The post Why plug-in hybrid-electric vehicles are worth a look right now appeared first on Popular Science.

]]>
The Range Rover Sport PHEV
The Range Rover Sport PHEV. Dan Carney

Electric vehicle advocates have waited for decades for the technology to mature sufficiently such that the vehicle’s driving range, performance, and utility are sufficient to meet the needs of most drivers—and for EVs to sell at prices that are within reasonable reach for many buyers.

We’ve reached that point now, or we’re very close to it, but the rollout of EVs is obstructed by a shortage of the batteries these cars need. So what’s a potential interim solution that would deliver the maximum number of efficient new vehicles to the most customers possible? Making the most of the available battery cells by employing them in plug-in hybrid-electric vehicles (PHEVs) that have gas engines in addition to their battery-electric drive.

Plug-in hybrids were initially seen as a bridge technology to help provide consumers the driving range they demand, but today’s battery-electrics are largely accomplishing that without the need for the cost and weight of a combustion drivetrain.

However, PHEVs can still play an interim role, but for a different reason: They use fewer precious battery cells than battery-electric cars. Jeep’s parent company, Stellantis, says that the Wrangler 4xe is the best-selling PHEV in the country, though they decline to provide sales numbers to back that up. This success comes despite having an electric-only driving range of just 25 miles, according to the EPA, but that’s the same as the Toyota Prius Prime’s electric-only range. 

Consider the Range Rover

But the new Land Rover Range Rover Sport plug-in hybrid points the way for hybrids to optimize battery availability: It has a 38.2-kilowatt-hour lithium-ion battery pack of cylindrical cells that give the Range Rover Sport a range of 51 miles on electric power alone. That’s about one-third to one-half as many cells as a battery-electric commonly requires.

Meanwhile, EV battery packs are typically between 80 kWh and 100 kWh or more. For example, Rivian says its fully electric R1T pickup truck carries 7,777 individual cylindrical-style 2170 cells in its 135-kWh pack. 

Besides the Range Rover Sport, other leading PHEVs include the Polestar 1, which is also rated at 51 miles of EV range, and the Toyota RAV4 Prime, which goes an impressive 42 miles.

PHEVs are also perfect for soothing the nerves of drivers who want to drive on electric grid power, but worry about getting stranded, observes Philipp Kampshoff, senior partner, leader of future mobility sector at McKinsey. “When we interview consumers, the biggest concern is still range anxiety and charging infrastructure, which are two sides of the same coin,” he says.

Extended-range PHEVs like the Range Rover could be necessary to meet future regulations, he adds. “Governments might require a minimum of 50 miles. Not all of them are capable of doing that.”

A 141-horsepower (105-kilowatt) electric motor powers the Range Rover Sport through the same drivetrain as the Ingenium 3.0-liter inline 6-cylinder combustion engine. That means that it employs the same 8-speed ZF automatic transmission and Intelligent All-Wheel Drive system whether it is running on gas, electric, or both, so the driving experience and off-road capabilities are undiminished. Combined, the motors produce 434 hp, which launches the Range Rover Sport to 60 mph in 5.5 seconds. 

While the Range Rover Sport’s EPA rating in all-electric mode is for 51 miles, it can go further than that, boasts chief engineer Peter Bingham in an interview at the Range Rover Sport media launch in Madrid, Spain. “Guys in the UK have managed driving real-world to get to around 70 miles,” he tells Popular Science. “EPA takes into account extremes, temperature variations, etc, but yeah, we’ve got guys who are managing to exceed 50 miles. And we know from our customer journey data, that the vast majority of customers will be able to make most of their daily journeys simply on EV power.”

That, of course, is the goal here: To provide enough battery capacity to cover most daily drives—which were an average of 32.7 miles in 2021, according to AAA—without wasting any of this resource on excess range while battery supply is tight.

A 2021 Toyota RAV4 Prime SE
A 2021 Toyota RAV4 Prime SE Toyota

The cost of complexity

Of course, unlike battery EVs, plug-in hybrids do burn gas. However, the U.S. Environmental Protection Agency says on its FuelEconomy.gov site that plug-in hybrids use roughly 30 to 60 percent less fuel than conventional vehicles. That means that by rationalizing battery cell use, automakers can put more efficient vehicles on the road in the near term, while the many battery plants that carmakers have announced are built.

Battery EVs cost an average of $66,000, according to Kelley Blue Book, versus an average of $45,000 for regular non-luxury vehicles. Compared to purely combustion-fueled models, plug-in hybrids cost between $4,000 and $8,000 more, according to the EPA, putting the sticker price on PHEVs somewhere between traditional vehicles and pure EVs.  Federal EV tax credits can often offset the difference in purchase price, and lower fuel costs will put PHEV drivers ahead.

That’s because while gasoline currently costs $3.65 per gallon on average, according to the U.S. Energy Information Agency, the same agency says that electricity costs 10.59 cents per kilowatt-hour. So a vehicle charged at home at the average national price enjoys the ability to drive for a cost of electricity that equals about $1 per gallon for gasoline, based on the distance the car can travel on $1 worth of electricity compared to a gallon of gas.

Fast-charging at public direct current chargers costs more, and can be on par with the price of gasoline, so while it makes sense for battery-electric drivers, it is better for plug-in hybrid drivers to stick to the 240-volt alternating current SAE Level 2 chargers at home or work, which can charge a PHEV’s battery in between one and four hours according to the EPA. Using a plain 120-volt wall outlet takes twice as long.

Another advantage of buying a car that shifts more of its driving time to electric power than conventional hybrids or short-range plug-ins is the fact that the US electric grid is continuously moving to greener fuel sources. So EVs, and cars that use power from the grid like PHEVs, can get increasingly green over their lifetimes thanks to cleaner electric power in the future. Gasoline vehicles, of course, will never run on anything else.

The University of California Davis Electric Vehicle Explorer site provides consumers detailed information on the costs of driving an EV or hybrid that are specific to their location and model. 

So why haven’t carmakers rushed to build more PHEVs? Well, because they aren’t simple to construct. “Plug-in hybrids are very interesting because you can run with electric in the city and on the motorway you can use the combustion engine,” notes former McLaren Automotive director of engineering Mario Carendente.

“The problem is around the cost,” he says. “You have to think about having a gas powertrain and an electric one and the complexity of the engineering.”

Indeed, Bingham, of Land Rover, concedes that was the challenge for the Range Rover Sport PHEV. “The hybrid is the most challenging thing,” he says. “You’ve got two powerpacks essentially right in a hybrid, so that you’re balancing fuel tank volume with battery capacity with exhaust routes. I would say it’s probably one of the more challenging aspects of the whole platform design.”

But there is a drivability benefit to plug-in hybrids that might make the complexity worthwhile to drivers. That is because the electric motor in a PHEV is much stronger than that in a conventional hybrid, and it makes a substantial difference in the car’s response to the accelerator pedal.

Sure, battery EVs can be electric rocket ships, but PHEVs deliver a stronger, smoother driving experience on the highway than combustion-only thanks to the electric motor working in concert with the combustion engine. That means more effortless acceleration and hill climbs, and as I experienced in the Range Rover Sport, more accurate cruise control because the electric motor can help hold the desired speed more precisely while climbing hills. Plus, its regeneration of electricity prevents the car from gaining speed on downhills.

We can’t all afford a $105,000 Range Rover Sport PHEV, but mainstream models like the Toyota RAV4 Prime and the Chrysler Pacifica PHEV provide electrified options that give more drivers the opportunity to do their daily driving on electric power rather than hoarding the limited supply of battery cells in EVs that don’t use all their capacity very often.

After that, it will be all pure EVs, says Kampsoff. “We would still say plug-in hybrid is a bridge technology. If you fast forward to 2030 and beyond, EV is a clear winner.”

The post Why plug-in hybrid-electric vehicles are worth a look right now appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>